Lumatone mapping for 21edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) m Template works without needing argument now |
ArrowHead294 (talk | contribs) m Categories are added automatically now |
||
Line 6: | Line 6: | ||
{{Lumatone mapping navigation}} | {{Lumatone mapping navigation}} | ||
Revision as of 01:25, 17 November 2024
There are several conceivable ways to map 21edo onto the Lumatone keyboard. However, as it has multiple small rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. The Whitewood mapping is the one that functions in the closest way to the familiar diatonic scale.

17
20
19
1
4
7
10
18
0
3
6
9
12
15
18
20
2
5
8
11
14
17
20
2
5
8
19
1
4
7
10
13
16
19
1
4
7
10
13
16
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
9
12
15
18
0
3
6
9
12
15
18
0
3
6
20
2
5
8
11
14
17
20
2
5
8
7
10
13
16
19
1
4
7
18
0
3
6
9
5
8
Since the 7th harmonic is the lowest one that is accurately tuned, the gorgo mapping works well for creating consonant combinations of notes, and also has a wider range.

3
7
8
12
16
20
3
9
13
17
0
4
8
12
16
14
18
1
5
9
13
17
0
4
8
12
15
19
2
6
10
14
18
1
5
9
13
17
0
4
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
4
8
12
16
20
3
7
11
15
19
2
6
10
14
0
4
8
12
16
20
3
7
11
15
19
13
17
0
4
8
12
16
20
9
13
17
0
4
1
5