245edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Created page with "{{Infobox ET}} {{ED intro}} 245edt is the 17th no-twos zeta peak EDT. == Harmonics == {{Harmonics in equal|245|3|1|i..."
 
No edit summary
Line 7: Line 7:
{{Harmonics in equal|245|3|1|intervals = prime|columns = 9}}
{{Harmonics in equal|245|3|1|intervals = prime|columns = 9}}
{{Harmonics in equal|245|3|1|start = 12|collapsed = 1|intervals = odd|columns = 15}}
{{Harmonics in equal|245|3|1|start = 12|collapsed = 1|intervals = odd|columns = 15}}
{{stub}}

Revision as of 02:11, 9 October 2024

← 244edt 245edt 246edt →
Prime factorization 5 × 72
Step size 7.76308 ¢ 
Octave 155\245edt (1203.28 ¢) (→ 31\49edt)
Consistency limit 3
Distinct consistency limit 3

245 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 245edt or 245ed3), is a nonoctave tuning system that divides the interval of 3/1 into 245 equal parts of about 7.76 ¢ each. Each step represents a frequency ratio of 31/245, or the 245th root of 3.

245edt is the 17th no-twos zeta peak EDT.

Harmonics

Approximation of prime harmonics in 245edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +3.28 +0.00 +0.63 +0.35 +1.93 -0.04 +1.31 +2.83 -1.88
Relative (%) +42.2 +0.0 +8.1 +4.5 +24.9 -0.6 +16.9 +36.5 -24.2
Steps
(reduced)
155
(155)
245
(0)
359
(114)
434
(189)
535
(45)
572
(82)
632
(142)
657
(167)
699
(209)
Approximation of odd harmonics in 245edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53
Error Absolute (¢) +1.27 +0.00 +0.50 +1.48 +1.93 +0.98 -2.06 -0.04 -1.23 +1.71 +0.63 +2.98 +0.70 +1.31 -3.18
Relative (%) +16.3 +0.0 +6.4 +19.1 +24.9 +12.7 -26.6 -0.6 -15.9 +22.0 +8.1 +38.4 +9.1 +16.9 -40.9
Steps
(reduced)
718
(228)
735
(0)
751
(16)
766
(31)
780
(45)
793
(58)
805
(70)
817
(82)
828
(93)
839
(104)
849
(114)
859
(124)
868
(133)
877
(142)
885
(150)
This page is a stub. You can help the Xenharmonic Wiki by expanding it.