Minimal consistent EDOs: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) mNo edit summary |
Tristanbay (talk | contribs) Re-added asterisks to 93.7 billion EDO Tags: Mobile edit Mobile web edit |
||
Line 138: | Line 138: | ||
| 129 || 2901533 || 2901533 || 42586208631 | | 129 || 2901533 || 2901533 || 42586208631 | ||
|- | |- | ||
| 131 || 2901533 || 2901533 || 93678217813 | | 131 || 2901533 || 2901533 || 93678217813*** | ||
|- | |- | ||
| 133 || 70910024 || 70910024 || 93678217813 | | 133 || 70910024 || 70910024 || 93678217813 |
Revision as of 06:23, 21 August 2024
An edo N is consistent with respect to the q-odd-limit if the closest approximations of the odd harmonics of the q-odd-limit in that edo also give the closest approximations of all the differences between these odd harmonics. It is distinctly consistent if every one of those closest approximations is a distinct value, and purely consistent if its relative errors on odd harmonics up to and including q never exceed 25%. Below is a table of the smallest consistent, and the smallest distinctly consistent, edo for every odd number up to 135. Odd limits of 2n − 1 are highlighted.
Odd limit |
Smallest consistent edo* |
Smallest distinctly consistent edo |
Smallest purely consistent** edo |
---|---|---|---|
1 | 1 | 1 | 1 |
3 | 1 | 3 | 2 |
5 | 3 | 9 | 3 |
7 | 4 | 27 | 10 |
9 | 5 | 41 | 41 |
11 | 22 | 58 | 41 |
13 | 26 | 87 | 46 |
15 | 29 | 111 | 87 |
17 | 58 | 149 | 311 |
19 | 80 | 217 | 311 |
21 | 94 | 282 | 311 |
23 | 94 | 282 | 311 |
25 | 282 | 388 | 311 |
27 | 282 | 388 | 311 |
29 | 282 | 1323 | 311 |
31 | 311 | 1600 | 311 |
33 | 311 | 1600 | 311 |
35 | 311 | 1600 | 311 |
37 | 311 | 1600 | 311 |
39 | 311 | 2554 | 311 |
41 | 311 | 2554 | 311 |
43 | 17461 | 17461 | 20567 |
45 | 17461 | 17461 | 20567 |
47 | 20567 | 20567 | 20567 |
49 | 20567 | 20567 | 459944 |
51 | 20567 | 20567 | 459944 |
53 | 20567 | 20567 | 1705229 |
55 | 20567 | 20567 | 1705229 |
57 | 20567 | 20567 | 1705229 |
59 | 253389 | 253389 | 3159811 |
61 | 625534 | 625534 | 3159811 |
63 | 625534 | 625534 | 3159811 |
65 | 625534 | 625534 | 3159811 |
67 | 625534 | 625534 | 7317929 |
69 | 759630 | 759630 | 8595351 |
71 | 759630 | 759630 | 8595351 |
73 | 759630 | 759630 | 27783092 |
75 | 2157429 | 2157429 | 34531581 |
77 | 2157429 | 2157429 | 34531581 |
79 | 2901533 | 2901533 | 50203972 |
81 | 2901533 | 2901533 | 50203972 |
83 | 2901533 | 2901533 | 50203972 |
85 | 2901533 | 2901533 | 50203972 |
87 | 2901533 | 2901533 | 50203972 |
89 | 2901533 | 2901533 | 50203972 |
91 | 2901533 | 2901533 | 50203972 |
93 | 2901533 | 2901533 | 50203972 |
95 | 2901533 | 2901533 | 50203972 |
97 | 2901533 | 2901533 | 1297643131 |
99 | 2901533 | 2901533 | 1297643131 |
101 | 2901533 | 2901533 | 3888109922 |
103 | 2901533 | 2901533 | 3888109922 |
105 | 2901533 | 2901533 | 3888109922 |
107 | 2901533 | 2901533 | 13805152233 |
109 | 2901533 | 2901533 | 27218556026 |
111 | 2901533 | 2901533 | 27218556026 |
113 | 2901533 | 2901533 | 27218556026 |
115 | 2901533 | 2901533 | 27218556026 |
117 | 2901533 | 2901533 | 27218556026 |
119 | 2901533 | 2901533 | 42586208631 |
121 | 2901533 | 2901533 | 42586208631 |
123 | 2901533 | 2901533 | 42586208631 |
125 | 2901533 | 2901533 | 42586208631 |
127 | 2901533 | 2901533 | 42586208631 |
129 | 2901533 | 2901533 | 42586208631 |
131 | 2901533 | 2901533 | 93678217813*** |
133 | 70910024 | 70910024 | 93678217813 |
135 | 70910024 | 70910024 | 93678217813 |
The last entry, 70910024edo, is consistent up to the 135-odd-limit. The next edo is 5407372813, reported to be consistent to the 155-odd-limit.
OEIS integer sequences links
- OEIS: Equal divisions of the octave with progressively increasing consistency levels (OEIS)
- OEIS: Equal divisions of the octave with progressively increasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit (OEIS)
- OEIS: Equal divisions of the octave with nondecreasing consistency levels. (OEIS)
- OEIS: Equal divisions of the octave with nondecreasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit (OEIS)