186zpi: Difference between revisions
Jump to navigation
Jump to search
Contribution (talk | contribs) No edit summary |
Contribution (talk | contribs) No edit summary |
||
Line 38: | Line 38: | ||
|- | |- | ||
! colspan="3" | Tuning | ! colspan="3" | Tuning | ||
! colspan="1" | | ! colspan="1" | Strength | ||
! colspan="2" | Closest EDO | ! colspan="2" | Closest EDO | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning | ||
! colspan="1" | | ! colspan="1" | Strength | ||
! colspan="2" | Closest EDO | ! colspan="2" | Closest EDO | ||
|- | |- | ||
Line 47: | Line 47: | ||
! Steps per octave | ! Steps per octave | ||
! Step size (cents) | ! Step size (cents) | ||
! | ! colspan="1" | Height | ||
! EDO | ! EDO | ||
! Octave (cents) | ! Octave (cents) | ||
! Steps per octave | ! Steps per octave | ||
! Step size (cents) | ! Step size (cents) | ||
! | ! colspan="1" |Height | ||
! EDO | ! EDO | ||
! Octave (cents) | ! Octave (cents) | ||
Line 59: | Line 59: | ||
| 41.3438354846780 | | 41.3438354846780 | ||
| 29.0248832971658 | | 29.0248832971658 | ||
| | |1.876590 | ||
| [[41edo]] | | [[41edo]] | ||
| 1190.02021518380 | | 1190.02021518380 | ||
| 41.3477989230936 | | 41.3477989230936 | ||
| 29.0221010852836 | | 29.0221010852836 | ||
| | |4.469823 | ||
| [[41edo]] | | [[41edo]] | ||
| 1189.90614449663 | | 1189.90614449663 | ||
|} | |} |
Revision as of 14:47, 28 June 2024
186 zeta peak index (abbreviated 186zpi), is the equal-step tuning system obtained from the 186st peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 0.241233 | 11.567493 | 41edo | 1190.02021518380 | 2 | 2 |
Theory
186zpi sets a height record on the Riemann zeta function with primes 2 and 3 removed. The last record is 125zpi and the next is 565zpi. It is important to highlight that the optimal equal tunings obtained by excluding the prime numbers 2 and 3 from the Riemann zeta function differs very slightly from the optimal equal tuning corresponding to the same peaks on the unmodified Riemann zeta function.
Unmodified Riemann zeta function | Riemann zeta function with primes 2 and 3 removed | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tuning | Strength | Closest EDO | Tuning | Strength | Closest EDO | |||||
ZPI | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) | Steps per octave | Step size (cents) | Height | EDO | Octave (cents) |
186zpi | 41.3438354846780 | 29.0248832971658 | 1.876590 | 41edo | 1190.02021518380 | 41.3477989230936 | 29.0221010852836 | 4.469823 | 41edo | 1189.90614449663 |