User:Inthar/Style guide: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Inthar (talk | contribs)
Inthar (talk | contribs)
mNo edit summary
Line 1: Line 1:
This page documents my xen math notation and its differences from conventional xen notation.
This page documents my xen math notation and its differences from conventional xen notation or conventional math notation.
== Variables ==
== Variables ==
* Capital italicized Latin letters may denote scales written cumulatively.
* Capital italicized Latin letters may denote scales written cumulatively.

Revision as of 14:55, 23 February 2024

This page documents my xen math notation and its differences from conventional xen notation or conventional math notation.

Variables

  • Capital italicized Latin letters may denote scales written cumulatively.
    • S(n) = 100n cents
  • Lowercase italicized Latin letters may denote (rotational equivalence classes of) scales written as steps, or abstract scale words. For example:
    • s(a, b, c) = abacaba
    • [math]\displaystyle{ \sum_{n=a}^{b-1}s(n) = S(b)-S(a) \ \text{if} \ s(n) := S(n+1)-S(n) }[/math]
  • Bolded variables denote interval sizes (especially letters of scale words) and elements of lattices.
    • 5L 2s
  • Sans serif function names are scale constructions, or more generally functions named more verbosely than in conventional math notation.
    • [math]\displaystyle{ \mathsf{MOS}(5,2;6)(\mathbf{L}, \mathbf{s}) = \mathbf{LLLsLLs} }[/math]
    • Blackdye is [math]\displaystyle{ \mathsf{Fl}(\mathrm{Pyth}[5]; 10/9) }[/math]

Words

Algebraic structures

  • [math]\displaystyle{ \mathrm{JI}\langle p_1, ..., p_r \rangle }[/math] is the p1.[...].pr subgroup, the subgroup of [math]\displaystyle{ (\mathbb{Q}_{\gt 0}, \cdot) }[/math] generated by rationals [math]\displaystyle{ p_1, ..., p_r. }[/math]
  • If R is a commutative ring with 1, [math]\displaystyle{ R^r\langle a_1, ..., a_r\rangle }[/math] is the rank-r free R-module generated by basis elements [math]\displaystyle{ a_1, ..., a_r. }[/math] Ordered tuples in such modules are assumed to be in the given basis. Example: [math]\displaystyle{ (0,1,3) \in \mathbb{Z}^3\langle \mathbf{L}, \mathbf{m}, \mathbf{s}\rangle }[/math]

Discrete sets

  • For [math]\displaystyle{ k \in \mathbb{R} }[/math] and [math]\displaystyle{ n\in \mathbb{Z}_{\gt 0}, }[/math] [math]\displaystyle{ [n]_k }[/math] denotes [math]\displaystyle{ \{k, k+1, ..., k+n-1\}. }[/math] I may also use [math]\displaystyle{ [i:j] }[/math] for [math]\displaystyle{ [j-i]_i. }[/math]

Miscellaneous

  • [math]\displaystyle{ \log }[/math] is base e.
  • Temperament names are.capitalized.