User:Inthar/Style guide: Difference between revisions
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
My notation may differ from conventional xen notation, especially in more technical xen theory writings. | My notation may differ from conventional xen notation, especially in more technical xen theory writings. | ||
== Variables == | == Variables == | ||
* Capital italicized Latin letters may denote scales written cumulatively. | * Capital italicized Latin letters may denote scales written cumulatively. | ||
* Lowercase italicized Latin letters may denote scales written as steps or abstract scale [[word]]s. For example: ''s''('''a''', '''b''', '''c''') = '''abacaba''' | ** ''S''(''n'') = 100''n'' cents | ||
* Bolded variables denote interval sizes, especially letters of scale words. | * Lowercase italicized Latin letters may denote scales written as steps or abstract scale [[word]]s. For example: | ||
** ''s''('''a''', '''b''', '''c''') = '''abacaba''' | |||
** <math>\sum_{n=a}^{b-1}s(n) = S(b)-S(a) \ \text{if} \ s(n) := S(n+1)-S(n)</math> | |||
* Bolded variables denote interval sizes, especially letters of scale words. | |||
** 5'''L''' 2'''s''' | |||
* Sans serif function names are scale constructions, or more generally functions named more verbosely than in conventional math notation. | * Sans serif function names are scale constructions, or more generally functions named more verbosely than in conventional math notation. | ||
** <math>\mathsf{MOS}(5,2;6)(\mathbf{L}, \mathbf{s}) = \mathbf{LLLsLLs}</math> | |||
== Algebraic structures == | == Algebraic structures == | ||
* <math>\mathrm{JI}\langle p_1, ..., p_r \rangle</math> is the ''p''<sub>1</sub>.[...].''p''<sub>''r''</sub> subgroup, the subgroup of <math>(\mathbb{Q}_{>0}, \cdot)</math> generated by rationals <math>p_1, ..., p_r.</math> | * <math>\mathrm{JI}\langle p_1, ..., p_r \rangle</math> is the ''p''<sub>1</sub>.[...].''p''<sub>''r''</sub> subgroup, the subgroup of <math>(\mathbb{Q}_{>0}, \cdot)</math> generated by rationals <math>p_1, ..., p_r.</math> | ||
* If ''R'' is a commutative ring, <math>R^r\langle a_1, ..., a_r\rangle</math> is the rank-''r'' free ''R''-module generated by basis elements <math>a_1, ..., a_r.</math> Example: <math>\mathbb{Z}^3\langle \mathbf{L}, \mathbf{m}, \mathbf{s}\rangle</math> | * If ''R'' is a commutative ring, <math>R^r\langle a_1, ..., a_r\rangle</math> is the rank-''r'' free ''R''-module generated by basis elements <math>a_1, ..., a_r.</math> Example: <math>\mathbb{Z}^3\langle \mathbf{L}, \mathbf{m}, \mathbf{s}\rangle</math> |
Revision as of 01:53, 23 February 2024
My notation may differ from conventional xen notation, especially in more technical xen theory writings.
Variables
- Capital italicized Latin letters may denote scales written cumulatively.
- S(n) = 100n cents
- Lowercase italicized Latin letters may denote scales written as steps or abstract scale words. For example:
- s(a, b, c) = abacaba
- [math]\displaystyle{ \sum_{n=a}^{b-1}s(n) = S(b)-S(a) \ \text{if} \ s(n) := S(n+1)-S(n) }[/math]
- Bolded variables denote interval sizes, especially letters of scale words.
- 5L 2s
- Sans serif function names are scale constructions, or more generally functions named more verbosely than in conventional math notation.
- [math]\displaystyle{ \mathsf{MOS}(5,2;6)(\mathbf{L}, \mathbf{s}) = \mathbf{LLLsLLs} }[/math]
Algebraic structures
- [math]\displaystyle{ \mathrm{JI}\langle p_1, ..., p_r \rangle }[/math] is the p1.[...].pr subgroup, the subgroup of [math]\displaystyle{ (\mathbb{Q}_{\gt 0}, \cdot) }[/math] generated by rationals [math]\displaystyle{ p_1, ..., p_r. }[/math]
- If R is a commutative ring, [math]\displaystyle{ R^r\langle a_1, ..., a_r\rangle }[/math] is the rank-r free R-module generated by basis elements [math]\displaystyle{ a_1, ..., a_r. }[/math] Example: [math]\displaystyle{ \mathbb{Z}^3\langle \mathbf{L}, \mathbf{m}, \mathbf{s}\rangle }[/math]