156edo: Difference between revisions
Jump to navigation
Jump to search
m Marked as stub |
m Added edo intro |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro}} | |||
It supports [[compton]] temperament. | |||
It tempers out 531441/524288 (pythagorean comma) and 1220703125/1207959552 (ditonmic comma) in the 5-limit, as well as 1224440064/1220703125 (parakleisma); 225/224, 250047/250000, and 589824/588245 in the 7-limit. Using the patent val, it tempers out 441/440, 1375/1372, 4375/4356, and 65536/65219 in the 11-limit; 351/350, 364/363, 625/624, 1625/1617, and 13122/13013 in the 13-limit. Using the 156e val, it tempers out 385/384, 540/539, 1331/1323, and 78408/78125 in the 11-limit; 351/350, 625/624, 847/845, and 1001/1000 in the 13-limit. | |||
{{stub}} | {{stub}} | ||
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> | [[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> |
Revision as of 02:12, 30 January 2024
← 155edo | 156edo | 157edo → |
It supports compton temperament.
It tempers out 531441/524288 (pythagorean comma) and 1220703125/1207959552 (ditonmic comma) in the 5-limit, as well as 1224440064/1220703125 (parakleisma); 225/224, 250047/250000, and 589824/588245 in the 7-limit. Using the patent val, it tempers out 441/440, 1375/1372, 4375/4356, and 65536/65219 in the 11-limit; 351/350, 364/363, 625/624, 1625/1617, and 13122/13013 in the 13-limit. Using the 156e val, it tempers out 385/384, 540/539, 1331/1323, and 78408/78125 in the 11-limit; 351/350, 625/624, 847/845, and 1001/1000 in the 13-limit.
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |