118edo: Difference between revisions

Inthar (talk | contribs)
Cleanup; +subsets and supersets
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
 
{{EDO intro|118}}
The '''118 equal divisions of the octave''' ('''118edo'''), or the '''118(-tone) equal temperament''' ('''118tet''', '''118et''') when viewed from a [[regular temperament]] perspective, is the [[equal division of the octave]] into 118 parts of about 10.2 [[cent]]s each.


== Theory ==
== Theory ==
Line 17: Line 16:


=== Prime harmonics ===
=== Prime harmonics ===
{{harmonics in equal|118}}
{{Harmonics in equal|118}}
 
=== Subsets and supersets ===
118edo contains [[2edo]] and [[59edo]] as subsets. Its multiples, [[236edo]], [[354edo]] and [[472edo]] are all of various interests, each providing distinct interpretations of harmonics 7 and 11.


== Intervals ==
== Intervals ==
Line 1,002: Line 1,004:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning Error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 1,039: Line 1,041:
| 3.89
| 3.89
|-
|-
| 2.3.5.7.11.13
| style="border-top: double;" | 2.3.5.7.11.13
| 196/195, 352/351, 384/384, 625/624, 729/728
| style="border-top: double;" | 196/195, 352/351, 384/384, 625/624, 729/728
| [{{val| 118 187 274 331 408 437 }}] (118)
| style="border-top: double;" | [{{val| 118 187 274 331 408 437 }}] (118)
| +0.125
| style="border-top: double;" | +0.125
| 0.604
| style="border-top: double;" | 0.604
| 5.93
| style="border-top: double;" | 5.93
|-
|-
| 2.3.5.7.11.13
| style="border-top: double;" | 2.3.5.7.11.13
| 169/168, 325/324, 364/363, 385/384, 3136/3125
| style="border-top: double;" | 169/168, 325/324, 364/363, 385/384, 3136/3125
| [{{val| 118 187 274 331 408 436 }}] (118f)
| style="border-top: double;" | [{{val| 118 187 274 331 408 436 }}] (118f)
| +0.583
| style="border-top: double;" | +0.583
| 0.650
| style="border-top: double;" | 0.650
| 6.39
| style="border-top: double;" | 6.39
|-
|-
| 2.3.5.7.11.17
| style="border-top: double;" | 2.3.5.7.11.17
| 289/288, 385/384, 441/440, 561/560, 3136/3125
| style="border-top: double;" | 289/288, 385/384, 441/440, 561/560, 3136/3125
| [{{val| 118 187 274 331 408 482 }}]
| style="border-top: double;" | [{{val| 118 187 274 331 408 482 }}]
| +0.417
| style="border-top: double;" | +0.417
| 0.399
| style="border-top: double;" | 0.399
| 3.92
| style="border-top: double;" | 3.92
|-
|-
| 2.3.5.7.11.17.19
| 2.3.5.7.11.17.19
Line 1,067: Line 1,069:
| 3.69
| 3.69
|}
|}
* 118et is lower in relative error than any previous ETs in the 5-limit. Not until [[171edo|171]] do we find a better ET in terms of absolute error, and not until [[441edo|441]] do we find one in terms of relative error.
* 118et is lower in relative error than any previous equal temperaments in the 5-limit. Not until [[171edo|171]] do we find a better one in terms of absolute error, and not until [[441edo|441]] do we find one in terms of relative error.


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
Line 1,073: Line 1,075:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(reduced)
! Generator<br>(Reduced)
! Cents<br>(reduced)
! Cents<br>(Reduced)
! Associated<br>ratio
! Associated<br>Ratio
! Temperaments
! Temperaments
|-
|-
Line 1,172: Line 1,174:
* [https://www.youtube.com/watch?v=eYnSsOnRZIs Pops] by [[Mercury Amalgam]]
* [https://www.youtube.com/watch?v=eYnSsOnRZIs Pops] by [[Mercury Amalgam]]


[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
[[Category:Gamelismic]]
[[Category:Gamelismic]]
[[Category:Guiron]]
[[Category:Guiron]]