11L 2s (3/1-equivalent): Difference between revisions
Jump to navigation
Jump to search
Wikispaces>xenwolf **Imported revision 602894558 - Original comment: removed tel links (and useless visual editor markup)** |
Wikispaces>FREEZE No edit summary |
||
Line 1: | Line 1: | ||
Having 11 large steps and 2 small steps, this MOS family is the first which is true Arcturus scale. However, it still has slightly smeary intonation regarding the generator (or seventh), This smearing causes 3g to be so flat that it tritave reduces into the syntonic continuum. | |||
{| class="wikitable" | |||
|- | |||
! colspan="7" | Generator | |||
! | cents | |||
! | L | |||
! | s | |||
! | 3g | |||
! | Notes | |||
|- | |||
| style="text-align:center;" | 5\11 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 864.525 | |||
| style="text-align:center;" | 172.905 | |||
| style="text-align:center;" | 0.00 | |||
| style="text-align:center;" | 691.62 | |||
| style="text-align:center;" | L=1 s=0 | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 36\79 | |||
| style="text-align:center;" | 866.714 | |||
| style="text-align:center;" | 168.528 | |||
| style="text-align:center;" | 24.075 | |||
| style="text-align:center;" | 698.186 | |||
| style="text-align:center;" | L=7 s=1 | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 31\68 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 867.068 | |||
| style="text-align:center;" | 167.82 | |||
| style="text-align:center;" | 27.969 | |||
| style="text-align:center;" | 699.248 | |||
| style="text-align:center;" | L=6 s=1 | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 57\125 | |||
| style="text-align:center;" | 867.2915 | |||
| style="text-align:center;" | 167.372 | |||
| style="text-align:center;" | 30.431 | |||
| style="text-align:center;" | 699.919 | |||
| style="text-align:center;" | | |||
|- | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | 26\57 | |||
| style="text-align:center;" | | |||
| style="text-align:center;" | | |||
| style |
Revision as of 00:00, 17 July 2018
Having 11 large steps and 2 small steps, this MOS family is the first which is true Arcturus scale. However, it still has slightly smeary intonation regarding the generator (or seventh), This smearing causes 3g to be so flat that it tritave reduces into the syntonic continuum.
Generator | cents | L | s | 3g | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5\11 | 864.525 | 172.905 | 0.00 | 691.62 | L=1 s=0 | ||||||
36\79 | 866.714 | 168.528 | 24.075 | 698.186 | L=7 s=1 | ||||||
31\68 | 867.068 | 167.82 | 27.969 | 699.248 | L=6 s=1 | ||||||
57\125 | 867.2915 | 167.372 | 30.431 | 699.919 | |||||||
26\57 | 867.558 | 166.838 | 33.368 | 700.72 | L=5 s=1 | ||||||
73\160 | 867.767 | 166.421 | 35.662 | 701.346 | |||||||
47\103 | 867.882 | 166.19 | 36.931 | 701.692 | |||||||
68\149 | 868.006 | 165.942 | 38.294 | 702.064 | |||||||
21\46 | 868.284 | 165.387 | 41.347 | 702.896 | L=4 s=1 | ||||||
79\173 | 868.523 | 164.909 | 43.976 | 703.613 | |||||||
58\127 | 868.609 | 164.736 | 44.928 | 703.873 | |||||||
95\208 | 868.681 | 164.592 | 45.72 | 704.089 | |||||||
37\81 | 868.794 | 164.3665 | 46.962 | 704.428 | L=7 s=2 | ||||||
90\197 | 868.9135 | 164.128 | 48.273 | 704.785 | |||||||
53\116 | 868.997 | 163.961 | 49.1885 | 705.035 | |||||||
69\151 | 869.105 | 163.744 | 50.383 | 705.36 | |||||||
16\35 | 869.465 | 163.025 | 54.342 | 706.44 | L=3 s=1 | ||||||
75\164 | 869.7965 | 162.362 | 57.986 | 707.4345 | |||||||
59\129 | 869.886 | 162.182 | 58.375 | 707.704 | |||||||
102\223 | 869.9525 | 162.05 | 59.703 | 707.9025 | |||||||
43\94 | 870.043 | 161.8685 | 60.701 | 708.175 | |||||||
113\247 | 870.125 | 161.705 | 61.601 | 708.4205 | |||||||
70\153 | 870.1755 | 161.604 | 62.155 | 708.5715 | |||||||
97\212 | 870.234 | 161.487 | 62.80 | 708.747 | |||||||
27\59 | 870.386 | 161.182 | 64.473 | 709.204 | L=5 s=2 | ||||||
92\201 | 870.547 | 160.862 | 66.237 | 709.685 | |||||||
65\142 | 870.613 | 160.729 | 66.97 | 709.885 | |||||||
103\225 | 870.673 | 160.6095 | 67.625 | 710.063 | |||||||
38\83 | 870.775 | 160.406 | 68.745 | 710.369 | L=7 s=3 | ||||||
87\190 | 870.895 | 160.165 | 70.072 | 710.731 | |||||||
49\107 | 870.989 | 159.9775 | 71.101 | 711.011 | |||||||
60\131 | 871.124 | 159.706 | 72.593 | 711.418 | |||||||
11\24 | 871.729 | 158.496 | 79.248 | 713.233 | L=2 s=1 | ||||||
61\133 | 872.325 | 157.3045 | 85.8024 | 715.021 | |||||||
50\109 | 872.456 | 157.042 | 87.246 | 715.414 | |||||||
89\194 | 872.546 | 156.862 | 88.235 | 715.684 | |||||||
39\85 | 872.662 | 156.632 | 89.504 | 716.03 | L=7 s=4 | ||||||
106\231 | 872.759 | 156.438 | 90.569 | 716.321 | |||||||
67\146 | 872.815 | 156.325 | 91.19 | 716.49 | |||||||
95\207 | 872.878 | 156.199 | 91.882 | 716.679 | |||||||
28\61 | 873.0285 | 155.898 | 93.539 | 717.131 | L=5 s=3 | ||||||
101\220 | 873.17 | 155.6145 | 95.098 | 717.556 | |||||||
73\159 | 873.225 | 155.506 | 95.696 | 717.719 | |||||||
118\257 | 873.271 | 155.413 | 96.208 | 717.8585 | Golden Anti-Arcturus is near here | ||||||
45\98 | 873.347 | 155.262 | 97.0385 | 718.085 | |||||||
107\233 | 873.43 | 155.095 | 97.955 | 718.335 | |||||||
62\135 | 873.49 | 154.974 | 98.62 | 718.516 | |||||||
79\172 | 873.572 | 154.81 | 99.521 | 718.762 | |||||||
17\37 | 873.871 | 154.2125 | 102.808 | 719.659 | L=3 s=2 | ||||||
74\161 | 874.1905 | 153.574 | 106.32 | 720.6165 | |||||||
57\124 | 874.286 | 153.3835 | 107.368 | 720.902 | |||||||
97\211 | 874.3585 | 153.238 | 108.168 | 721.12 | |||||||
40\87 | 874.462 | 153.03 | 109.308 | 721.431 | L=7 s=5 | ||||||
103\224 | 874.56 | 152.836 | 110.381 | 721.724 | |||||||
63\137 | 874.622 | 152.712 | 111.063 | 721.91 | |||||||
86\187 | 874.696 | 152.563 | 111.88 | 722.133 | |||||||
23\50 | 874.899 | 152.156 | 114.117 | 722.743 | L=4 s=3 | ||||||
75\163 | 875.133 | 151.69 | 116.684 | 723.443 | |||||||
52\113 | 875.236 | 151.483 | 117.82 | 723.753 | |||||||
81\176 | 875.332 | 151.292 | 118.872 | 724.04 | |||||||
29\63 | 875.503 | 150.949 | 120.759 | 724.554 | L=5 s=4 | ||||||
64\139 | 875.72 | 150.514 | 123.148 | 725.206 | |||||||
35\76 | 875.90 | 150.124 | 125.129 | 725.746 | L=6 s=5 | ||||||
41\89 | 876.1815 | 149.592 | 128.222 | 726.59 | L=7 s=6 | ||||||
6\13 | 877.825 | 146.304 | 731.521 | L=1 s=1 |