9L 5s: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 585830027 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
9L 5s refers to the structure of moment of symmetry scales with generators ranging from 2\9edo (two degrees of 9edo = 266¢) to 3\14 (three degrees of 14edo = 257¢). In the case of 14edo, L and s are the same size; in the case of 9edo, s becomes so small it disappears. The generator can be said to approximate 7/6, but just 7/6 is larger than 2\9edo, so it cannot be used as a generator. The simplest just interval that works as a generator is 36/31. Two generators are said to create a fourth like Godzilla, but in reality it is closer to 27/20, if that is considered a consonance.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-06-20 07:21:30 UTC</tt>.<br>
: The original revision id was <tt>585830027</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">9L 5s refers to the structure of moment of symmetry scales with generators ranging from 2\9edo (two degrees of 9edo = 266¢) to 3\14 (three degrees of 14edo = 257¢). In the case of 14edo, L and s are the same size; in the case of 9edo, s becomes so small it disappears. The generator can be said to approximate 7/6, but just 7/6 is larger than 2\9edo, so it cannot be used as a generator. The simplest just interval that works as a generator is 36/31. Two generators are said to create a fourth like Godzilla, but in reality it is closer to 27/20, if that is considered a consonance.


9L5s is third smallest MOS of [[Semiphore]].
9L5s is third smallest MOS of [[semiphore|Semiphore]].


||generator in degrees of an edo|| generator in cents||L in cents||s in cents||notes||
{| class="wikitable"
||3\14||257¢||86¢||86¢|| L=s||
|-
|| ||258.87¢||94¢||70¢|| Just interval 36/31 ||
| | generator in degrees of an edo
||8\37||259¢||97¢||65¢|| ||
| | generator in cents
||5\23||261¢||104¢||52¢||L≈2s||
| | L in cents
|| ||~261.5¢||104¢||52¢||L=2s||
| | s in cents
||7\32||262¢||113¢||38¢|| ||
| | notes
||2\9||266¢||266¢||0¢||s=0||
|-
</pre></div>
| | 3\14
<h4>Original HTML content:</h4>
| | 257¢
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;9L 5s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;9L 5s refers to the structure of moment of symmetry scales with generators ranging from 2\9edo (two degrees of 9edo = 266¢) to 3\14 (three degrees of 14edo = 257¢). In the case of 14edo, L and s are the same size; in the case of 9edo, s becomes so small it disappears. The generator can be said to approximate 7/6, but just 7/6 is larger than 2\9edo, so it cannot be used as a generator. The simplest just interval that works as a generator is 36/31. Two generators are said to create a fourth like Godzilla, but in reality it is closer to 27/20, if that is considered a consonance.&lt;br /&gt;
| | 86¢
&lt;br /&gt;
| | 86¢
9L5s is third smallest MOS of &lt;a class="wiki_link" href="/Semiphore"&gt;Semiphore&lt;/a&gt;.&lt;br /&gt;
| | L=s
&lt;br /&gt;
|-
 
| |  
 
| | 258.87¢
&lt;table class="wiki_table"&gt;
| | 94¢
    &lt;tr&gt;
| | 70¢
        &lt;td&gt;generator in degrees of an edo&lt;br /&gt;
| | Just interval 36/31
&lt;/td&gt;
|-
        &lt;td&gt;generator in cents&lt;br /&gt;
| | 8\37
&lt;/td&gt;
| | 259¢
        &lt;td&gt;L in cents&lt;br /&gt;
| | 97¢
&lt;/td&gt;
| | 65¢
        &lt;td&gt;s in cents&lt;br /&gt;
| |  
&lt;/td&gt;
|-
        &lt;td&gt;notes&lt;br /&gt;
| | 5\23
&lt;/td&gt;
| | 261¢
    &lt;/tr&gt;
| | 104¢
    &lt;tr&gt;
| | 52¢
        &lt;td&gt;3\14&lt;br /&gt;
| | L≈2s
&lt;/td&gt;
|-
        &lt;td&gt;257¢&lt;br /&gt;
| |  
&lt;/td&gt;
| | ~261.5¢
        &lt;td&gt;86¢&lt;br /&gt;
| | 104¢
&lt;/td&gt;
| | 52¢
        &lt;td&gt;86¢&lt;br /&gt;
| | L=2s
&lt;/td&gt;
|-
        &lt;td&gt;L=s&lt;br /&gt;
| | 7\32
&lt;/td&gt;
| | 262¢
    &lt;/tr&gt;
| | 113¢
    &lt;tr&gt;
| | 38¢
        &lt;td&gt;&lt;br /&gt;
| |  
&lt;/td&gt;
|-
        &lt;td&gt;258.87¢&lt;br /&gt;
| | 2\9
&lt;/td&gt;
| | 266¢
        &lt;td&gt;94¢&lt;br /&gt;
| | 266¢
&lt;/td&gt;
| | 0¢
        &lt;td&gt;70¢&lt;br /&gt;
| | s=0
&lt;/td&gt;
|}
        &lt;td&gt;Just interval 36/31&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;259¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;97¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;65¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5\23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;261¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;52¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;L≈2s&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;~261.5¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;52¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;L=2s&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7\32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;262¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;113¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;38¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2\9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;s=0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

9L 5s refers to the structure of moment of symmetry scales with generators ranging from 2\9edo (two degrees of 9edo = 266¢) to 3\14 (three degrees of 14edo = 257¢). In the case of 14edo, L and s are the same size; in the case of 9edo, s becomes so small it disappears. The generator can be said to approximate 7/6, but just 7/6 is larger than 2\9edo, so it cannot be used as a generator. The simplest just interval that works as a generator is 36/31. Two generators are said to create a fourth like Godzilla, but in reality it is closer to 27/20, if that is considered a consonance.

9L5s is third smallest MOS of Semiphore.

generator in degrees of an edo generator in cents L in cents s in cents notes
3\14 257¢ 86¢ 86¢ L=s
258.87¢ 94¢ 70¢ Just interval 36/31
8\37 259¢ 97¢ 65¢
5\23 261¢ 104¢ 52¢ L≈2s
~261.5¢ 104¢ 52¢ L=2s
7\32 262¢ 113¢ 38¢
2\9 266¢ 266¢ s=0