74edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>xenwolf
**Imported revision 215740136 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 277565016 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-03-31 03:41:55 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-11-21 00:46:14 UTC</tt>.<br>
: The original revision id was <tt>215740136</tt>.<br>
: The original revision id was <tt>277565016</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//74edo// divides the [[octave]] into 74 equal parts of size 16.216 [[cent]]s each. It is most notable as a [[meantone]] tuning, tempering out 81/80 in the [[5-limit]]; 81/80 and 126/125 (and hence 225/224) in the [[7-limit]]; 99/98, 176/175 and 441/440 in the [[11-limit]]; and 144/143 and 847/845 in the [[13-limit]]. Discarding 847/845 from that gives [[Meantone family|13-limit meantone]], aka 13-limit huygens, for which 74edo gives the [[optimal patent val]]; and discarding 144/143 gives a 13-limit 62&amp;74 temperament with half-octave period and two parallel tracks of meantone.</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//74edo// divides the [[octave]] into 74 equal parts of size 16.216 [[cent]]s each. It is most notable as a [[meantone]] tuning, tempering out 81/80 in the [[5-limit]]; 81/80 and 126/125 (and hence 225/224) in the [[7-limit]]; 99/98, 176/175 and 441/440 in the [[11-limit]]; and 144/143 and 847/845 in the [[13-limit]]. Discarding 847/845 from that gives [[Meantone family|13-limit meantone]], aka 13-limit huygens, for which 74edo gives the [[optimal patent val]]; and discarding 144/143 gives a 13-limit 62&amp;74 temperament with half-octave period and two parallel tracks of meantone.
 
74 tunes 11 only 1/30 of a cent sharp, and 13 2.7 cents sharp, making it a distinctly interesting choice for higher-limit meantone.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;74edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;74edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 74 equal parts of size 16.216 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It is most notable as a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; tuning, tempering out 81/80 in the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;; 81/80 and 126/125 (and hence 225/224) in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;; 99/98, 176/175 and 441/440 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;; and 144/143 and 847/845 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;. Discarding 847/845 from that gives &lt;a class="wiki_link" href="/Meantone%20family"&gt;13-limit meantone&lt;/a&gt;, aka 13-limit huygens, for which 74edo gives the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt;; and discarding 144/143 gives a 13-limit 62&amp;amp;74 temperament with half-octave period and two parallel tracks of meantone.&lt;/body&gt;&lt;/html&gt;</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;74edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;em&gt;74edo&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 74 equal parts of size 16.216 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It is most notable as a &lt;a class="wiki_link" href="/meantone"&gt;meantone&lt;/a&gt; tuning, tempering out 81/80 in the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt;; 81/80 and 126/125 (and hence 225/224) in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;; 99/98, 176/175 and 441/440 in the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt;; and 144/143 and 847/845 in the &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt;. Discarding 847/845 from that gives &lt;a class="wiki_link" href="/Meantone%20family"&gt;13-limit meantone&lt;/a&gt;, aka 13-limit huygens, for which 74edo gives the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt;; and discarding 144/143 gives a 13-limit 62&amp;amp;74 temperament with half-octave period and two parallel tracks of meantone.&lt;br /&gt;
&lt;br /&gt;
74 tunes 11 only 1/30 of a cent sharp, and 13 2.7 cents sharp, making it a distinctly interesting choice for higher-limit meantone.&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:46, 21 November 2011

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author genewardsmith and made on 2011-11-21 00:46:14 UTC.
The original revision id was 277565016.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

//74edo// divides the [[octave]] into 74 equal parts of size 16.216 [[cent]]s each. It is most notable as a [[meantone]] tuning, tempering out 81/80 in the [[5-limit]]; 81/80 and 126/125 (and hence 225/224) in the [[7-limit]]; 99/98, 176/175 and 441/440 in the [[11-limit]]; and 144/143 and 847/845 in the [[13-limit]]. Discarding 847/845 from that gives [[Meantone family|13-limit meantone]], aka 13-limit huygens, for which 74edo gives the [[optimal patent val]]; and discarding 144/143 gives a 13-limit 62&74 temperament with half-octave period and two parallel tracks of meantone.

74 tunes 11 only 1/30 of a cent sharp, and 13 2.7 cents sharp, making it a distinctly interesting choice for higher-limit meantone.

Original HTML content:

<html><head><title>74edo</title></head><body><em>74edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 74 equal parts of size 16.216 <a class="wiki_link" href="/cent">cent</a>s each. It is most notable as a <a class="wiki_link" href="/meantone">meantone</a> tuning, tempering out 81/80 in the <a class="wiki_link" href="/5-limit">5-limit</a>; 81/80 and 126/125 (and hence 225/224) in the <a class="wiki_link" href="/7-limit">7-limit</a>; 99/98, 176/175 and 441/440 in the <a class="wiki_link" href="/11-limit">11-limit</a>; and 144/143 and 847/845 in the <a class="wiki_link" href="/13-limit">13-limit</a>. Discarding 847/845 from that gives <a class="wiki_link" href="/Meantone%20family">13-limit meantone</a>, aka 13-limit huygens, for which 74edo gives the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a>; and discarding 144/143 gives a 13-limit 62&amp;74 temperament with half-octave period and two parallel tracks of meantone.<br />
<br />
74 tunes 11 only 1/30 of a cent sharp, and 13 2.7 cents sharp, making it a distinctly interesting choice for higher-limit meantone.</body></html>