Edϕ: Difference between revisions
Cmloegcmluin (talk | contribs) No edit summary |
m Removing from Category:Equal-step tuning using Cat-a-lot |
||
(14 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
Various equal divisions of the octave have close approximations of acoustic phi, or | Various equal divisions of the octave have close approximations of [[acoustic phi]], or <math>φ</math>, ≈833.090296357¢. | ||
If the <math>m^{th}</math> step of <math>n</math><span>ed2 is a close approximation of <math>φ</math>, the <math>n^{th}</math> step of <math>m</math><span>ed<math>φ</math> will be a close approximation of 2. | |||
For example, the 7th step of 10ed2 is 840¢, and the 10th step of 7ed<math>φ</math> is ≈1190.128995¢. | |||
As another example, the 9th step of 13ed2 is ≈830.7692308¢, and the 13th step of [[9edϕ|9ed<math>φ</math>]] is ≈1203.35265¢. | |||
Such <math>m</math><span>ed<math>φ</math> are interesting as variants of their respective <math>n</math><span>ed<math>2</math><span>, introducing some combination tone powers. | |||
{| class="wikitable" | {| class="wikitable" | ||
Line 122: | Line 124: | ||
|119.0128995 | |119.0128995 | ||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| rowspan="2" |'''scale step''' | | rowspan="2" |'''scale step''' | ||
| colspan="4" |'''13ed2''' | | colspan="4" |'''13ed2''' | ||
| colspan="4" |'''9edφ or 13ed(<math>2^{\frac{ | | colspan="4" |'''9edφ or 13ed(<math>2^{\frac{13log_2{φ}}{9}} ≈ 2.003876886</math>)''' | ||
|- | |- | ||
|'''frequency multiplier (definition)''' | |'''frequency multiplier (definition)''' | ||
Line 138: | Line 141: | ||
|- | |- | ||
|'''1''' | |'''1''' | ||
| | |<math>2^{\frac{1}{13}}</math> | ||
|1.054766076 | |1.054766076 | ||
|92.30769231 | |92.30769231 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{1}{9}}</math> or <math>≈2.003876886^{\frac{1}{13}}</math> | ||
|1.054923213 | |1.054923213 | ||
|92.56558848 | |92.56558848 | ||
Line 148: | Line 151: | ||
|- | |- | ||
|'''2''' | |'''2''' | ||
| | |<math>2^{\frac{2}{13}}</math> | ||
|1.112531476 | |1.112531476 | ||
|184.6153846 | |184.6153846 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{2}{9}}</math> or <math>≈2.003876886^{\frac{2}{13}}</math> | ||
|1.112862986 | |1.112862986 | ||
|185.131177 | |185.131177 | ||
Line 158: | Line 161: | ||
|- | |- | ||
|'''3''' | |'''3''' | ||
| | |<math>2^{\frac{3}{13}}</math> | ||
|1.17346046 | |1.17346046 | ||
|276.9230769 | |276.9230769 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{3}{9}}</math> or <math>≈2.003876886^{\frac{3}{13}}</math> | ||
|1.173984997 | |1.173984997 | ||
|277.6967655 | |277.6967655 | ||
Line 168: | Line 171: | ||
|- | |- | ||
|'''4''' | |'''4''' | ||
| | |<math>2^{\frac{4}{13}}</math> | ||
|1.237726285 | |1.237726285 | ||
|369.2307692 | |369.2307692 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{4}{9}}</math> or <math>≈2.003876886^{\frac{4}{13}}</math> | ||
|1.238464025 | |1.238464025 | ||
|370.2623539 | |370.2623539 | ||
Line 178: | Line 181: | ||
|- | |- | ||
|'''5''' | |'''5''' | ||
| | |<math>2^{\frac{5}{13}}</math> | ||
|1.305511698 | |1.305511698 | ||
|461.5384615 | |461.5384615 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{5}{9}}</math> or <math>≈2.003876886^{\frac{5}{13}}</math> | ||
|1.306484449 | |1.306484449 | ||
|462.8279424 | |462.8279424 | ||
Line 188: | Line 191: | ||
|- | |- | ||
|'''6''' | |'''6''' | ||
| | |<math>2^{\frac{6}{13}}</math> | ||
|1.377009451 | |1.377009451 | ||
|553.8461538 | |553.8461538 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{6}{9}}</math> or <math>≈2.003876886^{\frac{6}{13}}</math> | ||
|1.378240772 | |1.378240772 | ||
|555.3935309 | |555.3935309 | ||
Line 198: | Line 201: | ||
|- | |- | ||
|'''7''' | |'''7''' | ||
| | |<math>2^{\frac{7}{13}}</math> | ||
|1.452422856 | |1.452422856 | ||
|646.1538462 | |646.1538462 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{7}{9}}</math> or <math>≈2.003876886^{\frac{7}{13}}</math> | ||
|1.453938184 | |1.453938184 | ||
|647.9591194 | |647.9591194 | ||
Line 208: | Line 211: | ||
|- | |- | ||
|'''8''' | |'''8''' | ||
| | |<math>2^{\frac{8}{13}}</math> | ||
|1.531966357 | |1.531966357 | ||
|738.4615385 | |738.4615385 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{8}{9}}</math> or <math>≈2.003876886^{\frac{8}{13}}</math> | ||
|1.533793141 | |1.533793141 | ||
|740.5247079 | |740.5247079 | ||
Line 218: | Line 221: | ||
|- | |- | ||
|'''9''' | |'''9''' | ||
| | |<math>2^{\frac{9}{13}}</math> | ||
|1.615866144 | |1.615866144 | ||
|830.7692308 | |830.7692308 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{9}{9}}</math> or <math>≈2.003876886^{\frac{9}{13}}</math> | ||
|1.618033989 | |1.618033989 | ||
|833.0902964 | |833.0902964 | ||
Line 228: | Line 231: | ||
|- | |- | ||
|'''10''' | |'''10''' | ||
| | |<math>2^{\frac{10}{13}}</math> | ||
|1.704360793 | |1.704360793 | ||
|923.0769231 | |923.0769231 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{10}{9}}</math> or <math>≈2.003876886^{\frac{10}{13}}</math> | ||
|1.706901614 | |1.706901614 | ||
|925.6558848 | |925.6558848 | ||
Line 238: | Line 241: | ||
|- | |- | ||
|11 | |11 | ||
| | |<math>2^{\frac{11}{13}}</math> | ||
|1.797701946 | |1.797701946 | ||
|1015.384615 | |1015.384615 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{11}{9}}</math> or <math>≈2.003876886^{\frac{11}{13}}</math> | ||
|1.800650136 | |1.800650136 | ||
|1018.221473 | |1018.221473 | ||
Line 248: | Line 251: | ||
|- | |- | ||
|12 | |12 | ||
| | |<math>2^{\frac{12}{13}}</math> | ||
|1.896155029 | |1.896155029 | ||
|1107.692308 | |1107.692308 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{12}{9}}</math> or <math>≈2.003876886^{\frac{12}{13}}</math> | ||
|1.899547627 | |1.899547627 | ||
|1110.787062 | |1110.787062 | ||
Line 258: | Line 261: | ||
|- | |- | ||
|13 | |13 | ||
| | |<math>2^{\frac{13}{13}}</math> | ||
|2 | |2 | ||
|1200 | |1200 | ||
|92.30769231 | |92.30769231 | ||
| | |<math>φ^{\frac{13}{9}}</math> or <math>≈2.003876886^{\frac{13}{13}}</math> | ||
|2.003876886 | |2.003876886 | ||
|1203.35265 | |1203.35265 | ||
|92.56558848 | |92.56558848 | ||
|} | |} | ||
A couple such scales can be found in the [[Scala Scale Archive|Huygens-Fokker Foundation's Scala scale archive]]. They were described by Walter O'Connell in his 1993 paper [http://anaphoria.com/oconnell.pdf The Tonality of the Golden Section]. The 18th root of φ scale doubles the resolution of the 9th root scale featured above, as so as the 9th root of φ scale is similar to 13ed2 the 18th root of φ scale is similar to 26edo (which does a notably better job of approximating 3-, 5-, and 7- limit harmonies). | |||
cet33.scl 25 25th root of phi, Walter O´Connell (1993) | |||
cet46.scl 18 18th root of phi, Walter O´Connell (1993) | |||
== See also == | |||
* [[EDe]] | |||
* [[Acoustic pi]] | |||
* [[User:Eliora/Phi to the phi]] | |||
[[Category:Golden ratio]] | |||
{{todo|inline=1|improve synopsis|improve readability}} |
Latest revision as of 15:32, 1 August 2025
Various equal divisions of the octave have close approximations of acoustic phi, or [math]\displaystyle{ φ }[/math], ≈833.090296357¢.
If the [math]\displaystyle{ m^{th} }[/math] step of [math]\displaystyle{ n }[/math]ed2 is a close approximation of [math]\displaystyle{ φ }[/math], the [math]\displaystyle{ n^{th} }[/math] step of [math]\displaystyle{ m }[/math]ed[math]\displaystyle{ φ }[/math] will be a close approximation of 2.
For example, the 7th step of 10ed2 is 840¢, and the 10th step of 7ed[math]\displaystyle{ φ }[/math] is ≈1190.128995¢. As another example, the 9th step of 13ed2 is ≈830.7692308¢, and the 13th step of 9ed[math]\displaystyle{ φ }[/math] is ≈1203.35265¢.
Such [math]\displaystyle{ m }[/math]ed[math]\displaystyle{ φ }[/math] are interesting as variants of their respective [math]\displaystyle{ n }[/math]ed[math]\displaystyle{ 2 }[/math], introducing some combination tone powers.
scale step | 10ed2 | 7edφ or 10ed([math]\displaystyle{ 2^{\frac{10log_2{φ}}{7}} ≈ 1.988629015 }[/math]) | ||||||
frequency multiplier (definition) | 10ed2 frequency multiplier (decimal) | pitch (¢) | Δ (¢) | frequency multiplier (definition) | frequency multiplier (decimal) | pitch (¢) | Δ (¢) | |
1 | [math]\displaystyle{ 2^{\frac{1}{10}} }[/math] | 1.071773463 | 120 | 120 | [math]\displaystyle{ φ^{\frac{1}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{1}{10}} }[/math] | 1.071162542 | 119.0128995 | 119.0128995 |
2 | [math]\displaystyle{ 2^{\frac{2}{10}} }[/math] | 1.148698355 | 240 | 120 | [math]\displaystyle{ φ^{\frac{2}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{2}{10}} }[/math] | 1.147389191 | 238.025799 | 119.0128995 |
3 | [math]\displaystyle{ 2^{\frac{3}{10}} }[/math] | 1.231144413 | 360 | 120 | [math]\displaystyle{ φ^{\frac{3}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{3}{10}} }[/math] | 1.229040323 | 357.0386984 | 119.0128995 |
4 | [math]\displaystyle{ 2^{\frac{4}{10}} }[/math] | 1.319507911 | 480 | 120 | [math]\displaystyle{ φ^{\frac{4}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{4}{10}} }[/math] | 1.316501956 | 476.0515979 | 119.0128995 |
5 | [math]\displaystyle{ 2^{\frac{5}{10}} }[/math] | 1.414213562 | 600 | 120 | [math]\displaystyle{ φ^{\frac{5}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{5}{10}} }[/math] | 1.410187582 | 595.0644974 | 119.0128995 |
6 | [math]\displaystyle{ 2^{\frac{6}{10}} }[/math] | 1.515716567 | 720 | 120 | [math]\displaystyle{ φ^{\frac{6}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{6}{10}} }[/math] | 1.510540115 | 714.0773969 | 119.0128995 |
7 | [math]\displaystyle{ 2^{\frac{7}{10}} }[/math] | 1.624504793 | 840 | 120 | [math]\displaystyle{ φ^{\frac{7}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{7}{10}} }[/math] | 1.618033989 | 833.0902964 | 119.0128995 |
8 | [math]\displaystyle{ 2^{\frac{8}{10}} }[/math] | 1.741101127 | 960 | 120 | [math]\displaystyle{ φ^{\frac{8}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{8}{10}} }[/math] | 1.7331774 | 952.1031958 | 119.0128995 |
9 | [math]\displaystyle{ 2^{\frac{9}{10}} }[/math] | 1.866065983 | 1080 | 120 | [math]\displaystyle{ φ^{\frac{9}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{9}{10}} }[/math] | 1.85651471 | 1071.116095 | 119.0128995 |
10 | [math]\displaystyle{ 2^{\frac{10}{10}} }[/math] | 2 | 1200 | 120 | [math]\displaystyle{ φ^{\frac{10}{7}} }[/math] or [math]\displaystyle{ ≈1.988629015^{\frac{10}{10}} }[/math] | 1.988629015 | 1190.128995 | 119.0128995 |
scale step | 13ed2 | 9edφ or 13ed([math]\displaystyle{ 2^{\frac{13log_2{φ}}{9}} ≈ 2.003876886 }[/math]) | ||||||
frequency multiplier (definition) | 10ed2 frequency multiplier (decimal) | pitch (¢) | Δ (¢) | frequency multiplier (definition) | frequency multiplier (decimal) | pitch (¢) | Δ (¢) | |
1 | [math]\displaystyle{ 2^{\frac{1}{13}} }[/math] | 1.054766076 | 92.30769231 | 92.30769231 | [math]\displaystyle{ φ^{\frac{1}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{1}{13}} }[/math] | 1.054923213 | 92.56558848 | 92.56558848 |
2 | [math]\displaystyle{ 2^{\frac{2}{13}} }[/math] | 1.112531476 | 184.6153846 | 92.30769231 | [math]\displaystyle{ φ^{\frac{2}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{2}{13}} }[/math] | 1.112862986 | 185.131177 | 92.56558848 |
3 | [math]\displaystyle{ 2^{\frac{3}{13}} }[/math] | 1.17346046 | 276.9230769 | 92.30769231 | [math]\displaystyle{ φ^{\frac{3}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{3}{13}} }[/math] | 1.173984997 | 277.6967655 | 92.56558848 |
4 | [math]\displaystyle{ 2^{\frac{4}{13}} }[/math] | 1.237726285 | 369.2307692 | 92.30769231 | [math]\displaystyle{ φ^{\frac{4}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{4}{13}} }[/math] | 1.238464025 | 370.2623539 | 92.56558848 |
5 | [math]\displaystyle{ 2^{\frac{5}{13}} }[/math] | 1.305511698 | 461.5384615 | 92.30769231 | [math]\displaystyle{ φ^{\frac{5}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{5}{13}} }[/math] | 1.306484449 | 462.8279424 | 92.56558848 |
6 | [math]\displaystyle{ 2^{\frac{6}{13}} }[/math] | 1.377009451 | 553.8461538 | 92.30769231 | [math]\displaystyle{ φ^{\frac{6}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{6}{13}} }[/math] | 1.378240772 | 555.3935309 | 92.56558848 |
7 | [math]\displaystyle{ 2^{\frac{7}{13}} }[/math] | 1.452422856 | 646.1538462 | 92.30769231 | [math]\displaystyle{ φ^{\frac{7}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{7}{13}} }[/math] | 1.453938184 | 647.9591194 | 92.56558848 |
8 | [math]\displaystyle{ 2^{\frac{8}{13}} }[/math] | 1.531966357 | 738.4615385 | 92.30769231 | [math]\displaystyle{ φ^{\frac{8}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{8}{13}} }[/math] | 1.533793141 | 740.5247079 | 92.56558848 |
9 | [math]\displaystyle{ 2^{\frac{9}{13}} }[/math] | 1.615866144 | 830.7692308 | 92.30769231 | [math]\displaystyle{ φ^{\frac{9}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{9}{13}} }[/math] | 1.618033989 | 833.0902964 | 92.56558848 |
10 | [math]\displaystyle{ 2^{\frac{10}{13}} }[/math] | 1.704360793 | 923.0769231 | 92.30769231 | [math]\displaystyle{ φ^{\frac{10}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{10}{13}} }[/math] | 1.706901614 | 925.6558848 | 92.56558848 |
11 | [math]\displaystyle{ 2^{\frac{11}{13}} }[/math] | 1.797701946 | 1015.384615 | 92.30769231 | [math]\displaystyle{ φ^{\frac{11}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{11}{13}} }[/math] | 1.800650136 | 1018.221473 | 92.56558848 |
12 | [math]\displaystyle{ 2^{\frac{12}{13}} }[/math] | 1.896155029 | 1107.692308 | 92.30769231 | [math]\displaystyle{ φ^{\frac{12}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{12}{13}} }[/math] | 1.899547627 | 1110.787062 | 92.56558848 |
13 | [math]\displaystyle{ 2^{\frac{13}{13}} }[/math] | 2 | 1200 | 92.30769231 | [math]\displaystyle{ φ^{\frac{13}{9}} }[/math] or [math]\displaystyle{ ≈2.003876886^{\frac{13}{13}} }[/math] | 2.003876886 | 1203.35265 | 92.56558848 |
A couple such scales can be found in the Huygens-Fokker Foundation's Scala scale archive. They were described by Walter O'Connell in his 1993 paper The Tonality of the Golden Section. The 18th root of φ scale doubles the resolution of the 9th root scale featured above, as so as the 9th root of φ scale is similar to 13ed2 the 18th root of φ scale is similar to 26edo (which does a notably better job of approximating 3-, 5-, and 7- limit harmonies).
cet33.scl 25 25th root of phi, Walter O´Connell (1993) cet46.scl 18 18th root of phi, Walter O´Connell (1993)
See also