53ed7/3: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Created page with "This edX is practically identical to an to an extended Pythagorean tuning distorted to repeat at 7/3. It also makes the unit step fall .093 cen7 sharp of 14ed5/2. == Interval..."
 
BudjarnLambeth (talk | contribs)
m Intro harmonics
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
This edX is practically identical to an to an extended Pythagorean tuning distorted to repeat at 7/3. It also makes the unit step fall .093 cen7 sharp of 14ed5/2.
{{Stub}}
{{Infobox ET}}
{{ED intro}}


== Intervals ==
== Intervals ==
Line 8: Line 10:
! colspan="2" |''Pentadecatonic''
! colspan="2" |''Pentadecatonic''
!''Enneadecatonic''
!''Enneadecatonic''
!ed43\36
! colspan="2" |ed11\9~ed7/3
!30ed8/5~Pyrite<sub>v</sub>
!ed35\29
!''ed29\24=r¢<sub>v</sub>''
!ed17\14
!14ed5/2~ed11\9~ed7/3
!Golden
!ed16\13
!ed21\17
!''ed5\4=r¢<sub>^</sub>''
|-
|-
|1
|1
Line 25: Line 18:
|''Wb''
|''Wb''
|''Q#''
|''Q#''
|27.044
|27.673
|27.1229
|27.6768
27.1282
|27.326
|''27.3585''
|27.4633
|27.5938
27.673
 
27.6768
|27.8085
|27.8665
|27.9689
|''38.2019''
|-
|-
|2
|2
Line 47: Line 28:
|''Q#''
|''Q#''
|''Wb''
|''Wb''
|54.08805
|55.3459
|54.24575
|55.3536
54.2564
|54.6519
|''54.717''
|54.9865
|55.1877
55.3459
 
55.3536
|55.617
|55.73295
|55.93785
|''56.6038''
|-
|-
|3
|3
Line 66: Line 35:
| colspan="2" |F#
| colspan="2" |F#
| colspan="3" |''W''
| colspan="3" |''W''
|81.1321
|83.0189
|81.3686
|83.0304
81.3846
|81.9779
|''82.0755''
|82.4798
|82.7815
83.0189
 
83.0304
|83.42545
|83.5994
|83.9068
|''84.9057''
|-
|-
|4
|4
Line 88: Line 45:
|''Ebb''
|''Ebb''
|''W#''
|''W#''
|108.1761
|110.6918
|108.4915
|110.7073
108.5128
|109.3838
|''109.434''
|109.97305
|110.37525
110.6918
 
110.7073
|111.2339
|111.4659
|111.8757
|''113.20755''
|-
|-
|5
|5
Line 109: Line 54:
|''W#''
|''W#''
|''Eb''
|''Eb''
|135.2001
|138.3648
|135.6144
|138.38405
135.641
|136.6298
|''136.79245''
|137.1661
|137.9692
138.3648
 
138.38405
|139.0424
|139.3324
|139.8776
|''141.5094''
|-
|-
| rowspan="2" |6
| rowspan="2" |6
Line 130: Line 63:
| rowspan="2" |''Eb''
| rowspan="2" |''Eb''
| rowspan="2" |''E''
| rowspan="2" |''E''
| rowspan="2" |162.26415
| rowspan="2" |166.0377
| rowspan="2" |162.7373
| rowspan="2" |166.0609
162.7692
| rowspan="2" |163.9558
| rowspan="2" |''164.1509''
| rowspan="2" |164.9696
| rowspan="2" |165.563
166.0377
 
166.0609
| rowspan="2" |166.8509
| rowspan="2" |167.1988
| rowspan="2" |167.8135
| rowspan="2" |''169.8113''
|-
|-
|Bbbb
|Bbbb
Line 155: Line 76:
|''Wx''
|''Wx''
|''E#/Rb''
|''E#/Rb''
|189.3082
|193.7107
|189.8601
|193.7377
189.8971
|191.3817
|''191.5094''
|192.4528
|193.1569
193.7107
 
193.7377
|194.6594
|195.0653
|195.7825
|''198.1132''
|-
|-
|8
|8
Line 175: Line 84:
| colspan="2" |''E''
| colspan="2" |''E''
|''R''
|''R''
|216.3522
|221.38365
|216.983
|221.4145
217.0256
|218.6077
|''215.8679''
|219.946
|220.7507
221.38365
 
221.4145
|222.4679
|222.9319
|223.7514
|''226.4151''
|-
|-
|9
|9
Line 197: Line 94:
|''Rb''
|''Rb''
|''R#''
|''R#''
|243.3962
|249.0566
|244.1059
|249.0913
244.1538
|245.9336
|''248.2264''
|247.43935
|248.3445
249.0566
 
249.0913
|250.2764
|250.7983
|254.7203
|''254.717''
|-
|-
|10
|10
Line 218: Line 103:
|''E#''
|''E#''
|''Tb''
|''Tb''
|270.44025
|276.7296
|271.2286
|276.7681
271.28195
|273.2596
|''273.5849''
|274.9326
|275.9384
276.7296
 
276.7681
|278.08185
|278.9957
|279.6892
|''283.0289''
|-
|-
|11
|11
Line 239: Line 112:
| colspan="2" |''R''
| colspan="2" |''R''
|''T''
|''T''
|297.4842
|304.4025
|298.3516
|304.4449
298.41015
|300.5856
|''300.9434''
|302.4259
|303.5322
304.4025
 
304.4449
|305.8933
|306.5312
|307.6582
|''311.32075''
|-
|-
|12
|12
Line 261: Line 122:
|''Tb''
|''Tb''
|''T#''
|''T#''
|324.5283
|332.0755
|325.4745
|332.1217
325.5384
|327.9115
|''328.3019''
|329.9191
|331.126
332.0755
 
332.1217
|333.7208
|334.3977
|335.6271
|''339.6226''
|-
|-
| rowspan="2" |13
| rowspan="2" |13
Line 282: Line 131:
| rowspan="2" |''R#''
| rowspan="2" |''R#''
| rowspan="2" |''Yb''
| rowspan="2" |''Yb''
| rowspan="2" |351.5723
| rowspan="2" |359.7484
| rowspan="2" |652.5974
| rowspan="2" |359.7985
352.6665
| rowspan="2" |355.2375
| rowspan="2" |''355.6605''
| rowspan="2" |357.4124
| rowspan="2" |358.7199
359.7484
 
359.7985
| rowspan="2" |361.8103
| rowspan="2" |362.26415
| rowspan="2" |363.596
| rowspan="2" |''367.9243''
|-
|-
|Cbb
|Cbb
Line 306: Line 143:
| colspan="2" |''T''
| colspan="2" |''T''
|''Y''
|''Y''
|378.61635
|387.4214
|379.7203
|387.4753
379.7947
|382.5634
|''383.0189''
|384.9057
|386.3137
387.4214
 
387.4753
|389.3188
|390.1306
|391.5649
|''396.2264''
|-
|-
| rowspan="2" |15
| rowspan="2" |15
Line 327: Line 152:
| rowspan="2" |''Ab''
| rowspan="2" |''Ab''
| rowspan="2" |''Y#''
| rowspan="2" |''Y#''
| rowspan="2" |405.6604
| rowspan="2" |415.0943
| rowspan="2" |406.8431
| rowspan="2" |415.1521
416.9229
| rowspan="2" |409.8894
| rowspan="2" |''410.3774''
| rowspan="2" |412.3989
| rowspan="2" |413.9076
415.0943
 
415.1521
| rowspan="2" |417.1273
| rowspan="2" |417.9971
| rowspan="2" |419.53385
| rowspan="2" |''424.5283''
|-
|-
|Qbbb
|Qbbb
Line 352: Line 165:
|''T#''
|''T#''
|''Ab''
|''Ab''
|432.7044
|442.7673
|433.966
|442.82895
434.0511
|437.21535
|''437.73585''
|439.8922
|441.5014
442.7673
 
442.82895
|444.93575
|445.8636
|447.5028
|''452.8302''
|-
|-
|17
|17
Line 373: Line 174:
| colspan="2" |''A''
| colspan="2" |''A''
|''U''
|''U''
|459.7484
|470.44025
|461.0889
|470.8058
461.1793
|464.5413
|''465.0943''
|467.3854
|469.0952
470.44025
 
470.8058
|472.7442
|473.73
|475.4717
|''481.1321''
|-
|-
|18
|18
Line 395: Line 184:
|''Sbb''
|''Sbb''
|''U#''
|''U#''
|486.79245
|498.1132
|488.2118
|498.1826
488.3078
|491.8673
|''492.4528''
|494.8788
|496.5791
498.1132
 
498.1826
|500.5527
|501.5965
|502.4403
|''509.434''
|-
|-
|19
|19
Line 417: Line 194:
|''A#''
|''A#''
|''Ab''
|''Ab''
|513.8365
|525.7862
|515.33465
|525.8594
515.4357
|519.1932
|''519.8113''
|522.372
|524.2829
525.7862
 
525.8594
|528.3612
|529.463
|531.40955
|''537.73585''
|-
|-
|20
|20
Line 439: Line 204:
|''Sb''
|''Sb''
|''A''
|''A''
|540.8805
|553.4591
|542.4575
|553.5362
542.5639
|546.5192
|''547.1698''
|549.8652
|551.8767
553.4591
 
553.5362
|556.1697
|557.3295
|559.3785
|''566.0377''
|-
|-
|21
|21
Line 461: Line 214:
|''Ax''
|''Ax''
|''A#/Sb''
|''A#/Sb''
|567.9245
|581.1321
|569.5804
|581.213
569.6921
|573.84515
|''574.5283''
|577.3585
|579.4706
581.1321
 
581.213
|583.9782
|585.1959
|584.3474
|''594.3396''
|-
|-
|22
|22
Line 481: Line 222:
|''A*/Sbb''
|''A*/Sbb''
| colspan="3" |''S''
| colspan="3" |''S''
|594.96855
|608.805
|569.7033
|608.889
596.8203
|601.1711
|''601.8868''
|604.85175
|607.0644
608.805
 
608.889
|611.7867
|613.0624
|615.3163
|''922.6415''
|-
|-
|23
|23
Line 503: Line 232:
|''Db''
|''Db''
|''S#''
|''S#''
|622.0126
|636.478
|623.82615
|636.5666
623.9484
|628.4971
|''629.2453''
|632.345
|634.6582
636.478
 
636.5666
|639.59515
|640.9289
|643.285
|''650.9434''
|-
|-
|24
|24
Line 525: Line 242:
|''S#''
|''S#''
|''Db''
|''Db''
|649.0566
|664.1509
|650.949
|664.2434
651.0767
|655.823
|''656.6038''
|659.8383
|662.2521
664.1509
 
664.2434
|667.4306
|668.7954
|671.2541
|''679.2453''
|-
|-
|25
|25
Line 545: Line 250:
|''Db''
|''Db''
| colspan="3" |''D''
| colspan="3" |''D''
|676.1006
|691.8239
|678.0719
|691.9202
678.2049
|683.149
|''683.9623''
|687.3315
|689.8459
691.8239
 
691.9202
|695.2121
|696.6618
|699.2231
|''707.5472''
|-
|-
|26
|26
Line 567: Line 260:
|''Fb''
|''Fb''
|''D#''
|''D#''
|703.14465
|719.4969
|705.1948
|719.59705
705.3331
|710.47495
|''711.32075''
|714.8248
|717.43975
719.4969
 
719.59705
|723.0206
|724.5283
|727.192
|''735.8491''
|-
|-
|27
|27
Line 589: Line 270:
|''D#''
|''D#''
|''Fb''
|''Fb''
|730.1887
|747.1698
|732.3177
|747.2739
732.4613
|737.8003
|''738.67925''
|742.3181
|745.0336
747.1698
 
747.2739
|750.8291
|752.3948
|755.1609
|''764.1509''
|-
|-
|28
|28
Line 609: Line 278:
|''Q#''
|''Q#''
| colspan="3" |''F''
| colspan="3" |''F''
|757.2327
|774.8428
|759.4405
|774.9507
759.5895
|765.1269
|''766.0377''
|769.8113
|772.6274
774.8428
 
774.9507
|778.6376
|780.26125
|783.1299
|''792.4528''
|-
|-
| rowspan="2" |29
| rowspan="2" |29
Line 631: Line 288:
| rowspan="2" |''Gb''
| rowspan="2" |''Gb''
| rowspan="2" |''F#''
| rowspan="2" |''F#''
| rowspan="2" |784.2767
| rowspan="2" |802.6275
| rowspan="2" |786.5634
| rowspan="2" |802.6275
786.4177
| rowspan="2" |792.7\4528
| rowspan="2" |''793.3962''
| rowspan="2" |797.3046
| rowspan="2" |800.2213
802.5157
 
802.6275
| rowspan="2" |803.44605
| rowspan="2" |808.1277
| rowspan="2" |811.0988
| rowspan="2" |''820.7547''
|-
|-
| colspan="2" |Ebbb
| colspan="2" |Ebbb
Line 655: Line 300:
|''F#''
|''F#''
|''Gb''
|''Gb''
|811.32075
|830.1887
|813.6863
|830.3043
813.8459
|819.7788
|''820.7547''
|821.7978
|827.8151
830.1887
 
830.3043
|834.2545
|835.9942
|839.0678
|''849.0567''
|-
|-
|31
|31
Line 675: Line 308:
|''Cx''
|''Cx''
| colspan="3" |''G''
| colspan="3" |''G''
|838.3648
|857.8616
|840.8092
|857.9811
840.97405
|847.10475
|''848.1132''
|852.2911
|855.4089
857.8616
 
857.9811
|862.063
|863.8607
|867.0366
|''877.3585''
|-
|-
|32
|32
Line 697: Line 318:
|''Zbb''
|''Zbb''
|''G#''
|''G#''
|865.4088
|885.5346
|867.932
|885.6579
868.10225
|874.4307
|''875.4717''
|879.7844
|883.0028
885.5346
 
885.6579
|889.8715
|891.7271
|895.00555
|''905.6604''
|-
|-
|33
|33
Line 719: Line 328:
|''G#''
|''G#''
|''Hb''
|''Hb''
|892.4528
|913.20755
|895.0549
|913.3347
895.23045
|901.7567
|''902.8302''
|907.3776
|910.5966
913.20755
 
913.3347.
|917.68
|919.5936
|922.9745
|''933.9633''
|-
|-
|34
|34
Line 740: Line 337:
|''Zb''
|''Zb''
|''H''
|''H''
|919.4969
|940.8805
|922.1778
|941.0115
922.3586
|929.0826
|''930.1887''
|934.7709
|938.19045
940.8805
 
941.0115
|945.4885
|947.4601
|980.9434
|''962.26415''
|-
|-
|35
|35
Line 762: Line 347:
|''Gx''
|''Gx''
|''H#''
|''H#''
|946.5409
|968.5535
|949.3007
|968.6883
949.4868
|956.4086
|''957.5472''
|962.26415
|955.7843
968.5535
 
968.6883
|973.297
|975.3266
|978.9123
|''990.566''
|-
|-
| rowspan="2" |36
| rowspan="2" |36
Line 783: Line 356:
| colspan="2" rowspan="2" |''Z''
| colspan="2" rowspan="2" |''Z''
| rowspan="2" |''Jb''
| rowspan="2" |''Jb''
| rowspan="2" |973.5489
| rowspan="2" |996.2264
| rowspan="2" |976.4235
| rowspan="2" |996.3651
976.615
| rowspan="2" |983.73455
| rowspan="2" |''984.9057''
| rowspan="2" |989.7574
| rowspan="2" |993.3781
996.2264
 
996.3651
| rowspan="2" |1001.10545
| rowspan="2" |1003.193
| rowspan="2" |1006.7712
| rowspan="2" |''1018.8679''
|-
|-
| colspan="2" |Fbbb
| colspan="2" |Fbbb
Line 807: Line 368:
|''Z#''
|''Z#''
|''J''
|''J''
|1000.6289
|1023.8994
|1003.5464
|1024.04195
1003.7432
|1011.0605
|''1012.26415''
|1017.2057
|1020.972
1023.8994
 
1024.04195
|1028.9139
|1031.0595
|1034.8502
|''1047.1698''
|-
|-
| rowspan="2" |38
| rowspan="2" |38
Line 829: Line 378:
| rowspan="2" |''Xb''
| rowspan="2" |''Xb''
| rowspan="2" |''J#''
| rowspan="2" |''J#''
| rowspan="2" |1027.673
| rowspan="2" |1051.5723
| rowspan="2" |1030.6693
| rowspan="2" |1051.7188
1030.8714
| rowspan="2" |1038.3865
| rowspan="2" |''1039.6226''
| rowspan="2" |1044.7439
| rowspan="2" |1048.5658
1051.5723
 
1051.7188
| rowspan="2" |1056.7224
| rowspan="2" |1058.926
| rowspan="2" |1062.8191
| rowspan="2" |''1075.4717''
|-
|-
| colspan="2" |Gbbb
| colspan="2" |Gbbb
Line 851: Line 388:
| colspan="2" |''X''
| colspan="2" |''X''
|''Zb''
|''Zb''
|1054.717
|1079.2453
|1057.7922
|1079.3956
1057.9996
|1065.7124
|''1066.9811''
|1072.2372
|1076.1596
1079.2453
 
1079.3956
|1084.5309
|1086.79245
|1090.788
|''1103.7736''
|-
|-
|40
|40
Line 873: Line 398:
|''X#''
|''X#''
|''Z''
|''Z''
|1081.761
|1106.9182
|1084.91505
|1107.0724
1085.1278
|1093.3038
|''1094.3396''
|1099.7305
|1103.7535
1106.9182
 
1107.0724
|1112.3394
|1114.6589
|1118.7569
|''1132.0755''
|-
|-
|41
|41
Line 894: Line 407:
|''Cb''
|''Cb''
|''Z#/Xb''
|''Z#/Xb''
|1108.805
|1134.5912
|1112.0379
|1134.7492
1112.256
|1120.36435
|''1121.6981''
|1127.2237
|1131.3473
1134.5912
 
1134.7492
|1140.1479
|1142.5254
|1146.7259
|''1160.3774''
|-
|-
|42
|42
Line 915: Line 416:
| colspan="2" |''C''
| colspan="2" |''C''
|''X''
|''X''
|1135.8491
|1162.26415
|1139.1608
|1162.426
1139.3842
|1147.6903
|''1149.0566''
|1154.717
|1158.99411
1162.26415
 
1162.426
|1167.95365
|1170.3919
|1174.6948
|''1188.67925''
|-
|-
|43
|43
Line 936: Line 425:
|''C#''
|''C#''
|''X#''
|''X#''
|1162.8931
|1189.9371
|1166.2838
|1190.1028
1166.5124
|1175.0163
|''1176.4151''
|1182.2102
|1186.535
1189.9371
 
1190.1028
|1195.7648
|1198.25835
|1202.6638
|''1216.9811''
|-
|-
|44
|44
Line 957: Line 434:
|''Vb''
|''Vb''
|''Cb''
|''Cb''
|1189.9371
|1217.6101
|1193.40655
|1217.7796
1193.6406
|1202.3422
|''1203.7736''
|1209.7035
|1214.1288
1217.6101
 
1217.7796
|1223.5733
|1226.1248
|1230.6326
|''1245.283''
|-
|-
|45
|45
Line 978: Line 443:
| colspan="2" |''V''
| colspan="2" |''V''
|''C''
|''C''
|1216.9811
|1245.253
|1220.5291
|1245.4564
1220.7688
|1229.6682
|''1231.1321''
|1237.7197
|1241.72265
1245.253
 
1245.4564
|1251.3818
|1253.9913
|1258.60155
|''1273.5849''
|-
|-
|46
|46
Line 999: Line 452:
|''Bbb''
|''Bbb''
|''C#/Vb''
|''C#/Vb''
|1244.0252
|1272.956
|1247.6523
|1273.1332
1247.897
|1256.9941
|''1258.4906''
|1264.69
|1269.3165
1272.956
 
1273.1332
|1279.1903
|1281.8578
|1286.5705
|''1301.8868''
|-
|-
|47
|47
Line 1,021: Line 462:
|''V#''
|''V#''
|''V''
|''V''
|1271.0692
|1300.6289
|1274.7752
|1300.81005
1275.0252
|1284.3201
|''1285.8461''
|1292.1833
|1296.99103
1300.6289
 
1300.81005
|1306.9988
|1309.7242
|1314.5394
|''1330.1887''
|-
|-
|48
|48
Line 1,042: Line 471:
|''Bb''
|''Bb''
|''V#''
|''V#''
|1298.1132
|1328.3019
|1301.8981
|1328.4869
1302.1534
|1311.646
|''1313.20755''
|1319.67655
|1324.5042
1328.3019
 
1328.4869
|1334.8073
|1337.5927
|1342.5083
|''1358.4906''
|-
|-
|49
|49
Line 1,063: Line 480:
|''Vx''
|''Vx''
|''Bb''
|''Bb''
|1325.1572
|1355.9748
|1326.0209
|1356.1164
1329.2816
|1338.972
|''1340.566''
|1347.1698
|1352.098
1355.9748
 
1356.11637
|1362.6157
|1365.4572
|1370.4773
|''1386.79245''
|-
|-
|50
|50
Line 1,083: Line 488:
|''Abb''
|''Abb''
| colspan="3" |''B''
| colspan="3" |''B''
|1352.20125
|1383.6478
|1356.1438
|1383.8405
1356.4098
|1366.298
|''1367.9245''
|1374.5531
|1379.6918
1383.6478
 
1383.8405
|1390.4242
|1393.3237
|1398.4462
|''1415.0943''
|-
|-
|51
|51
Line 1,104: Line 497:
|''Qb''
|''Qb''
|''B#''
|''B#''
|1379.2453
|1411.3208
|1383.3667
|1411.5173
1383.538
|1393.6239
|''1395.286''
|1402.1563
|1407.2857
1411.3208
 
1411.5173
|1418.2327
|1421.1*01
|1426.4151
|''1443.3962''
|-
|-
|52
|52
Line 1,126: Line 507:
|''B#''
|''B#''
|''Qb''
|''Qb''
|1403.2893
|1438.9937
|1410.3896
|1439.1941
1410.6662
|1420.9499
|''1422.6415''
|1429.6496
|1434.8795
1438.9937
 
1439.1941
|1443.0412
|1449.0566
|1424.354
|''1471.6981''
|-
|-
|53
|53
Line 1,145: Line 514:
| colspan="2" |G
| colspan="2" |G
| colspan="3" |''Q''
| colspan="3" |''Q''
|1433.3333
|1466.{{Overline|6}}
|1437.5124
|1466.8709
1437.79435
|1448.2759
|''1450''
|1457.1429
|1466.6617
1466.8709
|1473.8497
|1476.9231
|1482.3529
|''1500''
|}
|}
== Harmonics ==
{{Harmonics in equal
| steps = 53
| num = 7
| denom = 3
}}
{{Harmonics in equal
| steps = 53
| num = 7
| denom = 3
| start = 12
| collapsed = 1
}}

Latest revision as of 08:01, 5 October 2024

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 52ed7/3 53ed7/3 54ed7/3 →
Prime factorization 53 (prime)
Step size 27.6768 ¢ 
Octave 43\53ed7/3 (1190.1 ¢)
Twelfth 69\53ed7/3 (1909.7 ¢)
Consistency limit 2
Distinct consistency limit 2

53 equal divisions of 7/3 (abbreviated 53ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 53 equal parts of about 27.7 ¢ each. Each step represents a frequency ratio of (7/3)1/53, or the 53rd root of 7/3.

Intervals

Degrees Enneatonic Pentadecatonic Enneadecatonic ed11\9~ed7/3
1 8x Ex W\\ Wb Q# 27.673 27.6768
2 2b Jb Ab Qp Q# Wb 55.3459 55.3536
3 9# F# W 83.0189 83.0304
4 3bb Abb Bbb Ex Ebb W# 110.6918 110.7073
5 1# G# Wp W# Eb 138.3648 138.38405
6 8*/4bbb E* E\\ Eb E 166.0377 166.0609
Bbbb Cbbb
7 2 J A Wpp Wx E#/Rb 193.7107 193.7377
8 9x Fx E R 221.38365 221.4145
9 3b Ab Bb R\\ Rb R# 249.0566 249.0913
10 1x Gx Ep E# Tb 276.7296 276.7681
11 4bb Bbb Cbb R T 304.4025 304.4449
12 2# J# A# T\\ Tb T# 332.0755 332.1217
13 9*/5bb F* Rp R# Yb 359.7484 359.7985
Cbb Qbb
14 3 A B T Y 387.4214 387.4753
15 1*/6bbb G* A\\ Ab Y# 415.0943 415.1521
Qbbb Dbbb
16 4b Bb Cb Tp T# Ab 442.7673 442.82895
17 2x Jx Ax A U 470.44025 470.8058
18 5b Cb Qb Sx Sbb U# 498.1132 498.1826
19 3# A# B# Ap A# Ab 525.7862 525.8594
20 6bb Qbb Dbb S\\ Sb A 553.4591 553.5362
21 4 B C App Ax A#/Sb 581.1321 581.213
22 2*/7bbb J*/Dbbb A*/Sbb S 608.805 608.889
23 5 C Q D\\ Db S# 636.478 636.5666
24 3x Ax Bx Sp S# Db 664.1509 664.2434
25 6b Qb Db D 691.8239 691.9202
26 4# B# C# F\\ Fb D# 719.4969 719.59705
27 7bb Dbb Sbb Dp D# Fb 747.1698 747.2739
28 5# C# Q# F 774.8428 774.9507
29 3*/8bbb A* Bx G\\ Gb F# 802.6275 802.6275
Ebbb
30 6 Q D Fp F# Gb 830.1887 830.3043
31 4x Bx Cx G 857.8616 857.9811
32 7b Db Sb Zx Zbb G# 885.5346 885.6579
33 5x Cx Qx Gp G# Hb 913.20755 913.3347
34 8bb Ebb Z\\ Zb H 940.8805 941.0115
35 6# Q# D# Gpp Gx H# 968.5535 968.6883
36 4*/9bbb B* C* Z Jb 996.2264 996.3651
Fbbb
37 7 D S X\\ Z# J 1023.8994 1024.04195
38 5*/1bbb C* Q* Zp Xb J# 1051.5723 1051.7188
Gbbb
39 8b Eb X Zb 1079.2453 1079.3956
40 6x Qx Dx C\\ X# Z 1106.9182 1107.0724
41 9bb Fbb Xp Cb Z#/Xb 1134.5912 1134.7492
42 7# D# S# C X 1162.26415 1162.426
43 1bb Gbb V\\ C# X# 1189.9371 1190.1028
44 8 E Cp Vb Cb 1217.6101 1217.7796
45 6*/2bbb Q*/Jbbb D*/Abbb V C 1245.253 1245.4564
46 9b Fb Bx Bbb C#/Vb 1272.956 1273.1332
47 7x Dx Sx Vp V# V 1300.6289 1300.81005
48 1b Gb B\\ Bb V# 1328.3019 1328.4869
49 8# E# Vpp Vx Bb 1355.9748 1356.1164
50 2bb Jbb Abb B 1383.6478 1383.8405
51 9 F Q\\ Qb B# 1411.3208 1411.5173
52 7*/3bbb D*/Abbb S*/Bbbb Bp B# Qb 1438.9937 1439.1941
53 1 G Q 1466.6 1466.8709

Harmonics

Approximation of harmonics in 53ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -9.9 +7.7 +7.9 +9.0 -2.2 +7.7 -2.0 -12.2 -0.9 +0.2 -12.0
Relative (%) -35.8 +28.0 +28.5 +32.7 -7.8 +28.0 -7.3 -44.0 -3.1 +0.7 -43.5
Steps
(reduced)
43
(43)
69
(16)
87
(34)
101
(48)
112
(6)
122
(16)
130
(24)
137
(31)
144
(38)
150
(44)
155
(49)
Approximation of harmonics in 53ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -12.2 -2.2 -10.9 -11.9 -6.2 +5.6 -5.0 -10.8 -12.2 -9.7 -3.6
Relative (%) -44.2 -7.8 -39.3 -43.0 -22.3 +20.2 -18.0 -38.8 -44.0 -35.0 -13.1
Steps
(reduced)
160
(1)
165
(6)
169
(10)
173
(14)
177
(18)
181
(22)
184
(25)
187
(28)
190
(31)
193
(34)
196
(37)