72edo: Difference between revisions
m Text replacement - "Ups and Downs Notation" to "Ups and downs notation" |
|||
(162 intermediate revisions by 30 users not shown) | |||
Line 1: | Line 1: | ||
{{interwiki | |||
| de = 72-EDO | |||
| en = 72edo | |||
| es = | |||
| ja = | |||
}} | |||
{{Infobox ET}} | |||
{{Wikipedia|72 equal temperament}} | |||
{{ED intro}} | |||
Each step of 72edo is called a ''[[morion]]'' (plural ''moria)''. This produces a twelfth-tone tuning, with the whole tone measuring 200{{c}}, the same as in [[12edo]]. 72edo is also a superset of [[24edo]], a common and standard tuning of [[Arabic, Turkish, Persian music|Arabic music]], and has itself been used to tune Turkish music. | |||
Composers that used | Composers that used 72edo include [[Ivan Wyschnegradsky]], [[Julián Carrillo]] (who is better associated with [[96edo]]), [[Georg Friedrich Haas]], [[Ezra Sims]], [[Rick Tagawa]], [[James Tenney]], and the jazz musician [[Joe Maneri]]. | ||
== Theory == | |||
72edo approximates [[11-limit]] [[just intonation]] exceptionally well. It is [[consistent]] in the [[17-odd-limit]] and is the ninth [[zeta integral edo]]. It is the second edo (after [[58edo|58]]) to be [[consistency|distinctly consistent]] in the [[11-odd-limit]], the first edo to be [[consistency|consistent to distance 2]] in the 11-odd-limit, and the first edo to be consistent in the 12- and 13-[[odd prime sum limit|odd-prime-sum-limit]]. | |||
72 | The octave, fifth and fourth are the same size as they would be in 12edo, 72, 42 and 30 steps respectively, but the classic major third ([[5/4]]) measures 23 steps, not 24, and other [[5-limit]] major intervals are one step flat of 12edo while minor ones are one step sharp. The septimal minor seventh ([[7/4]]) is 58 steps, while the undecimal semiaugmented fourth ([[11/8]]) is 33. | ||
72et is the only 11-limit regular temperament which treats harmonics 24 to 28 as being equidistant in pitch, splits [[25/24]] into two equal [[49/48]][[~]][[50/49]]'s, and splits [[28/27]] into two equal [[55/54]]~[[56/55]]'s. It is also an excellent tuning for [[miracle]] temperament, especially the 11-limit version, and the related rank-3 temperament [[prodigy]], and is a good tuning for other temperaments and scales, including [[wizard]], [[harry]], [[catakleismic]], [[compton]], [[unidec]] and [[tritikleismic]]. | |||
The 13th harmonic (octave reduced) is so closely mapped on [[acoustic phi]] that 72edo could be treated as a 2.3.5.7.11.ϕ.17 temperament. | |||
{| class="wikitable" | 72edo is the smallest multiple of 12edo that (just barely) has another diatonic fifth, 43\72, an extremely hard diatonic fifth suitable for a 5edo [[circulating temperament]]. | ||
=== Prime harmonics === | |||
{{Harmonics in equal|72|columns=9}} | |||
{{Harmonics in equal|72|columns=9|start=10|collapsed=true|title=Approximation of prime harmonics in 72edo (continued)}} | |||
=== Octave stretch === | |||
72edo's approximations of harmonics 3, 5, 7, 11, 13 and 17 can all be improved by slightly [[stretched and compressed tuning|stretching the octave]], using tunings such as [[114edt]] or [[186ed6]]. 114edt is quite hard and might be best for the 13- or 17-limit specifically. 186ed6 is milder and less disruptive, suitable for 11-limit and/or full 19-limit harmonies. | |||
=== Subsets and supersets === | |||
Since 72 factors into primes as {{nowrap| 2<sup>3</sup> × 3<sup>2</sup> }}, 72edo has subset edos {{EDOs| 2, 3, 4, 6, 8, 9, 12, 18, 24, and 36 }}. [[144edo]], which doubles it, provides a possible correction to its approximate harmonic 13. | |||
== Intervals == | |||
{| class="wikitable center-all right-2 left-3" | |||
|- | |- | ||
! | | ! # | ||
! Cents | |||
! Approximate ratios<ref group="note">{{sg|limit=19-limit}} For lower limits see [[Table of 72edo intervals]].</ref> | |||
! colspan="3" | [[Ups and downs notation]] | |||
! colspan="3" | [[SKULO interval names|SKULO interval names and notation]] | |||
! (K, S, U) | |||
|- | |- | ||
| | | | 0 | ||
| | | 0.0 | ||
| 1/1 | |||
| P1 | |||
| perfect unison | |||
| D | |||
| P1 | |||
| perfect unison | |||
| D | |||
| D | |||
|- | |- | ||
| 1 | |||
| 16.7 | |||
| 81/80, 91/90, 99/98, 100/99, 105/104 | |||
| ^1 | |||
| up unison | |||
| ^D | |||
| K1, L1 | |||
| comma-wide unison, large unison | |||
| KD, LD | |||
| KD | |||
|- | |- | ||
| | | | 2 | ||
| 33.3 | |||
| 45/44, 49/48, 50/49, 55/54, 64/63 | |||
| ^^ | |||
| dup unison | |||
| ^^D | |||
| S1, O1 | |||
| | | super unison, on unison | ||
| SD, OD | |||
| SD | |||
|- | |- | ||
| 3 | |||
| 50.0 | |||
| 33/32, 36/35, 40/39 | |||
| ^<sup>3</sup>1, v<sup>3</sup>m2 | |||
| trup unison, trudminor 2nd | |||
| ^<sup>3</sup>D, v<sup>3</sup>Eb | |||
| U1, H1, hm2 | |||
| uber unison, hyper unison, hypominor 2nd | |||
| UD, HD, uEb | |||
| UD, uEb | |||
|- | |- | ||
| | . | | 4 | ||
| 66.7 | |||
| 25/24, 26/25, 27/26, 28/27 | |||
| vvm2 | |||
| dudminor 2nd | |||
| vvEb | |||
| kkA1, sm2 | |||
| classic aug unison, subminor 2nd | |||
| kkD#, sEb | |||
| sD#, (kkD#), sEb | |||
| | |||
| | |||
|- | |- | ||
| | | 5 | ||
| 83.3 | |||
| 20/19, 21/20, 22/21 | |||
| vm2 | |||
| downminor 2nd | |||
| vEb | |||
| kA1, lm2 | |||
| | | comma-narrow aug unison, little minor 2nd | ||
| | | kD#, lEb | ||
| | | kD#, kEb | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | . | | 6 | ||
| | | 100.0 | ||
| 17/16, 18/17, 19/18 | |||
| m2 | |||
| minor 2nd | |||
| Eb | |||
| | | m2 | ||
| | | minor 2nd | ||
| | | Eb | ||
| | | Eb | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | | 7 | ||
| 116.7 | |||
| 15/14, 16/15 | |||
| ^m2 | |||
| upminor 2nd | |||
| ^Eb | |||
| Km2 | |||
| | | classic minor 2nd | ||
| | | KEb | ||
| KEb | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | 8 | ||
| | | 133.3 | ||
| | | 13/12, 14/13, 27/25 | ||
| ^^m2, v~2 | |||
| | | dupminor 2nd, downmid 2nd | ||
| ^^Eb | |||
| Om2 | |||
| on minor 2nd | |||
| OEb | |||
| | | SEb | ||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | 9 | ||
| 150.0 | |||
| 12/11 | |||
| ~2 | |||
| mid 2nd | |||
| v<sup>3</sup>E | |||
| N2 | |||
| | | neutral 2nd | ||
| | | UEb/uE | ||
| | | UEb/uE | ||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| 10 | |||
| 166.7 | |||
| 11/10 | |||
| ^~2, vvM2 | |||
| upmid 2nd, dudmajor 2nd | |||
| | | vvE | ||
| oM2 | |||
| | | off major 2nd | ||
| | | oE | ||
| sE | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | . | | 11 | ||
| 183.3 | |||
| | | 10/9 | ||
| | | vM2 | ||
| downmajor 2nd | |||
| vE | |||
| kM2 | |||
| classic/comma-narrow major 2nd | |||
| kE | |||
| kE | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| 12 | |||
| 200.0 | |||
| 9/8 | |||
| | | M2 | ||
| major 2nd | |||
| E | |||
| M2 | |||
| major 2nd | |||
| E | |||
| E | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | 13 | ||
| 216.7 | |||
| | | 17/15, 25/22 | ||
| ^M2 | |||
| upmajor 2nd | |||
| ^E | |||
| LM2 | |||
| | | large major 2nd | ||
| | | LE | ||
| | | KE | ||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | | | 14 | ||
| | | | 233.3 | ||
| | | 8/7 | ||
| | | ^^M2 | ||
| | | | dupmajor 2nd | ||
| | | ^^E | ||
| SM2 | |||
| supermajor 2nd | |||
| SE | |||
| SE | |||
|- | |- | ||
| | | 15 | ||
| | | | 250.0 | ||
| | | 15/13, 22/19 | ||
| | | ^<sup>3</sup>M2, <br>v<sup>3</sup>m3 | ||
| | | trupmajor 2nd,<br>trudminor 3rd | ||
| ^<sup>3</sup>E, <br>v<sup>3</sup>F | |||
| HM2, hm3 | |||
| hypermajor 2nd, hypominor 3rd | |||
| HE, hF | |||
| UE, uF | |||
|- | |- | ||
| 16 | |||
| 266.7 | |||
| | | 7/6 | ||
| | | vvm3 | ||
| | | | dudminor 3rd | ||
| | | vvF | ||
| | | sm3 | ||
| | | subminor 3rd | ||
| sF | |||
| sF | |||
|- | |- | ||
| | | 17 | ||
| | | 283.3 | ||
| | | 13/11, 20/17 | ||
| | | vm3 | ||
| | | | downminor 3rd | ||
| | | vF | ||
| | | lm3 | ||
| | | little minor 3rd | ||
| lF | |||
| kF | |||
|- | |- | ||
| | | 18 | ||
| | | 300.0 | ||
| | | 19/16, 25/21, 32/27 | ||
| m3 | |||
| | | | minor 3rd | ||
| | | F | ||
| | | m3 | ||
| minor 3rd | |||
| F | |||
| | | F | ||
|- | |- | ||
| | | 19 | ||
| | | 316.7 | ||
| | | 6/5 | ||
| | | ^m3 | ||
| | | | upminor 3rd | ||
| | | ^F | ||
| | | Km3 | ||
| | | classic minor 3rd | ||
| KF | |||
| KF | |||
|- | |- | ||
| | | 20 | ||
| | | 333.3 | ||
| 17/14, 39/32, 40/33 | |||
| | | ^^m3, v~3 | ||
| | | | dupminor 3rd, downmid 3rd | ||
| | | ^^F | ||
| | | Om3 | ||
| | | on minor third | ||
| OF | |||
| SF | |||
|- | |- | ||
| | | | 21 | ||
| | | | 350.0 | ||
| | | 11/9, 27/22 | ||
| | | ~3 | ||
| | | mid 3rd | ||
| | | ^<sup>3</sup>F | ||
| | | N3 | ||
| | | neutral 3rd | ||
| UF/uF# | |||
| UF/uF# | |||
|- | |- | ||
| | | 22 | ||
| | | 366.7 | ||
| 16/13, 21/17, 26/21 | |||
| | | ^~3, vvM3 | ||
| | | | upmid 3rd, dudmajor 3rd | ||
| | | vvF# | ||
| | | oM3 | ||
| | | off major 3rd | ||
| oF# | |||
| sF# | |||
|- | |- | ||
| | | 23 | ||
| | | 383.3 | ||
| | | 5/4 | ||
| | | vM3 | ||
| | | | downmajor 3rd | ||
| | | vF# | ||
| | | kM3 | ||
| | | classic major 3rd | ||
| kF# | |||
| kF# | |||
|- | |- | ||
| | | | 24 | ||
| | | | 400.0 | ||
| | | 24/19 | ||
| | | M3 | ||
| | | major 3rd | ||
| | | F# | ||
| | | M3 | ||
| | | major 3rd | ||
| F# | |||
| F# | |||
|- | |- | ||
| | | 25 | ||
| | | 416.7 | ||
| | | 14/11 | ||
| | | ^M3 | ||
| | | upmajor 3rd | ||
| ^F# | |||
| | | LM3 | ||
| | | large major 3rd | ||
| LF# | |||
| KF# | |||
|- | |- | ||
| | | 26 | ||
| | | 433.3 | ||
| | | 9/7 | ||
| | | ^^M3 | ||
| | | | dupmajor 3rd | ||
| | | ^^F# | ||
| | | SM3 | ||
| | | supermajor 3rd | ||
| SF# | |||
| SF# | |||
|- | |- | ||
| | | 27 | ||
| | | 450.0 | ||
| | | 13/10, 22/17 | ||
| | | ^<sup>3</sup>M3, v<sup>3</sup>4 | ||
| | | | trupmajor 3rd, trud 4th | ||
| | | ^<sup>3</sup>F#, v<sup>3</sup>G | ||
| | | HM3, h4 | ||
| | | hypermajor 3rd, hypo 4th | ||
| HF#, hG | |||
| UF#, uG | |||
|- | |- | ||
| | | 28 | ||
| | | 466.7 | ||
| | | 17/13, 21/16 | ||
| | | vv4 | ||
| | | | dud 4th | ||
| | | vvG | ||
| | | s4 | ||
| | | sub 4th | ||
| sG | |||
| sG | |||
|- | |- | ||
| | | 29 | ||
| | | 483.3 | ||
| | | 33/25 | ||
| | | v4 | ||
| | | | down 4th | ||
| | | vG | ||
| | | l4 | ||
| | | little 4th | ||
| lG | |||
| kG | |||
|- | |- | ||
| | | | 30 | ||
| | | | 500.0 | ||
| | | 4/3 | ||
| | | P4 | ||
| | | perfect 4th | ||
| | | G | ||
| | | P4 | ||
| perfect 4th | |||
| G | |||
| | | G | ||
|- | |- | ||
| | | 31 | ||
| | | 516.7 | ||
| | | 27/20 | ||
| | | ^4 | ||
| | | | up 4th | ||
| | | ^G | ||
| | | K4 | ||
| | | comma-wide 4th | ||
| KG | |||
| KG | |||
|- | |- | ||
| | | 32 | ||
| | | 533.3 | ||
| | | 15/11, 19/14, ''26/19'' | ||
| | | ^^4, v~4 | ||
| | | | dup 4th, downmid 4th | ||
| | | ^^G | ||
| | | O4 | ||
| | | on 4th | ||
| OG | |||
| SG | |||
|- | |- | ||
| | | | 33 | ||
| | | | 550.0 | ||
| | | 11/8 | ||
| | | ~4 | ||
| | | mid 4th | ||
| | | ^<sup>3</sup>G | ||
| | | U4/N4 | ||
| | | uber 4th / neutral 4th | ||
| UG | |||
| UG | |||
|- | |- | ||
| | | 34 | ||
| | | 566.7 | ||
| | | 18/13, 25/18 | ||
| | | ^~4, vvA4 | ||
| | | | upmid 4th, dudaug 4th | ||
| | | vvG# | ||
| | | kkA4, sd5 | ||
| | | classic aug 4th, sub dim 5th | ||
| kkG#, sAb | |||
| SG#, (kkG#), sAb | |||
|- | |- | ||
| | | | 35 | ||
| | | 583.3 | ||
| | | 7/5 | ||
| | | vA4, vd5 | ||
| | | | downaug 4th, <br>downdim 5th | ||
| | | vG#, vAb | ||
| | | kA4, ld5 | ||
| | | comma-narrow aug 4th, little dim 5th | ||
| kG#, lAb | |||
| kG#, kAb | |||
|- | |- | ||
| | | | 36 | ||
| | | | 600.0 | ||
| | | 17/12, 24/17 | ||
| | | A4, d5 | ||
| | | aug 4th, dim 5th | ||
| | | G#, Ab | ||
| | | A4, d5 | ||
| | | aug 4th, dim 5th | ||
| G#, Ab | |||
| G#, Ab | |||
|- | |- | ||
| | | 37 | ||
| | | 616.7 | ||
| | | 10/7 | ||
| | | ^A4, ^d5 | ||
| | | | upaug 4th, updim 5th | ||
| | | ^G#, ^Ab | ||
| | | LA4, Kd5 | ||
| | | large aug 4th, comma-wide dim 5th | ||
| LG#, KAb | |||
| KG#, KAb | |||
|- | |- | ||
| | | | 38 | ||
| | | 633.3 | ||
| | | 13/9, 36/25 | ||
| | | v~5, ^^d5 | ||
| | | | downmid 5th, <br>dupdim 5th | ||
| | | ^^Ab | ||
| | | SA4, KKd5 | ||
| | | super aug 4th, classic dim 5th | ||
| SG#, KKAb | |||
| SG#, SAb, (KKAb) | |||
|- | |- | ||
| | | | 39 | ||
| | | | 650.0 | ||
| | | 16/11 | ||
| | | ~5 | ||
| | | mid 5th | ||
| | | v<sup>3</sup>A | ||
| | | u5/N5 | ||
| | | unter 5th / neutral 5th | ||
| uA | |||
| uA | |||
|- | |- | ||
| | | 40 | ||
| | | 666.7 | ||
| | | ''19/13'', 22/15, 28/19 | ||
| | | vv5, ^~5 | ||
| | | | dud 5th, upmid 5th | ||
| | | vvA | ||
| | | o5 | ||
| | | off 5th | ||
| oA | |||
| sA | |||
|- | |- | ||
| | | 41 | ||
| | | 683.3 | ||
| | | 40/27 | ||
| | | v5 | ||
| | | | down 5th | ||
| | | vA | ||
| | | k5 | ||
| | | comma-narrow 5th | ||
| kA | |||
| kA | |||
|- | |- | ||
| | | | 42 | ||
| | | | 700.0 | ||
| | | 3/2 | ||
| | | P5 | ||
| | | perfect 5th | ||
| | | A | ||
| | | P5 | ||
| perfect 5th | |||
| A | |||
| | | A | ||
|- | |- | ||
| | | 43 | ||
| | | 716.7 | ||
| | | 50/33 | ||
| | | ^5 | ||
| | | | up 5th | ||
| | | ^A | ||
| | | L5 | ||
| | | large fifth | ||
| LA | |||
| KA | |||
|- | |- | ||
| | | 44 | ||
| | | 733.3 | ||
| | | 26/17, 32/21 | ||
| | | ^^5 | ||
| | | | dup 5th | ||
| | | ^^A | ||
| | | S5 | ||
| | | super fifth | ||
| SA | |||
| SA | |||
|- | |- | ||
| | | 45 | ||
| | | 750.0 | ||
| | | 17/11, 20/13 | ||
| | | ^<sup>3</sup>5, v<sup>3</sup>m6 | ||
| | | | trup 5th, trudminor 6th | ||
| | | ^<sup>3</sup>A, v<sup>3</sup>Bb | ||
| | | H5, hm6 | ||
| | | hyper fifth, hypominor 6th | ||
| HA, hBb | |||
| UA, uBb | |||
|- | |- | ||
| | | 46 | ||
| | | 766.7 | ||
| | | 14/9 | ||
| | | vvm6 | ||
| | | | dudminor 6th | ||
| | | vvBb | ||
| | | sm6 | ||
| | | superminor 6th | ||
| sBb | |||
| sBb | |||
|- | |- | ||
| | | 47 | ||
| | | 783.3 | ||
| | | 11/7 | ||
| | | vm6 | ||
| | | | downminor 6th | ||
| | | vBb | ||
| | | lm6 | ||
| | | little minor 6th | ||
| lBb | |||
| kBb | |||
|- | |- | ||
| | | | 48 | ||
| | | | 800.0 | ||
| | | 19/12 | ||
| | | m6 | ||
| | | minor 6th | ||
| | | Bb | ||
| | | m6 | ||
| | | minor 6th | ||
| Bb | |||
| Bb | |||
|- | |- | ||
| | | 49 | ||
| | | 816.7 | ||
| | | 8/5 | ||
| | | ^m6 | ||
| | | | upminor 6th | ||
| | | ^Bb | ||
| | | Km6 | ||
| | | classic minor 6th | ||
| kBb | |||
| kBb | |||
|- | |- | ||
| | | 50 | ||
| | | 833.3 | ||
| | | 13/8, 21/13, 34/21 | ||
| | | ^^m6, v~6 | ||
| | | | dupminor 6th, downmid 6th | ||
| | | ^^Bb | ||
| | | Om6 | ||
| | | on minor 6th | ||
| oBb | |||
| sBb | |||
|- | |- | ||
| | | | 51 | ||
| | | | 850.0 | ||
| | | 18/11, 44/27 | ||
| | | ~6 | ||
| | | mid 6th | ||
| | | v<sup>3</sup>B | ||
| | | N6 | ||
| | | neutral 6th | ||
| UBb, uB | |||
| UBb, uB | |||
|- | |- | ||
| | | 52 | ||
| | | 866.7 | ||
| | | 28/17, 33/20, 64/39 | ||
| | | ^~6, vvM6 | ||
| | | | upmid 6th, dudmajor 6th | ||
| | | vvB | ||
| | | oM6 | ||
| | | off major 6th | ||
| oB | |||
| sB | |||
|- | |- | ||
| | | 53 | ||
| | | 883.3 | ||
| | | 5/3 | ||
| | | vM6 | ||
| | | | downmajor 6th | ||
| | | vB | ||
| | | kM6 | ||
| | | classic major 6th | ||
| kB | |||
| kB | |||
|- | |- | ||
| | | 54 | ||
| | | 900.0 | ||
| | | 27/16, 32/19, 42/25 | ||
| M6 | |||
| | | | major 6th | ||
| | | B | ||
| | | M6 | ||
| | | major 6th | ||
| B | |||
| B | |||
|- | |- | ||
| | | 55 | ||
| | | 916.7 | ||
| | | 17/10, 22/13 | ||
| | | ^M6 | ||
| | | | upmajor 6th | ||
| | | ^B | ||
| | | LM6 | ||
| | | large major 6th | ||
| LB | |||
| KB | |||
|- | |- | ||
| | | 56 | ||
| | | 933.3 | ||
| | | 12/7 | ||
| | | ^^M6 | ||
| | | | dupmajor 6th | ||
| | | ^^B | ||
| | | SM6 | ||
| | | supermajor 6th | ||
| SB | |||
| SB | |||
|- | |- | ||
| | | 57 | ||
| | | 950.0 | ||
| | | 19/11, 26/15 | ||
| | | ^<sup>3</sup>M6, <br>v<sup>3</sup>m7 | ||
| | 3/ | | trupmajor 6th,<br>trudminor 7th | ||
| | | ^<sup>3</sup>B, <br>v<sup>3</sup>C | ||
| | | HM6, hm7 | ||
| | | hypermajor 6th, hypominor 7th | ||
| HB, hC | |||
| UB, uC | |||
|- | |- | ||
| | | 58 | ||
| | | 966.7 | ||
| | | 7/4 | ||
| | | vvm7 | ||
| | | | dudminor 7th | ||
| | | vvC | ||
| | | sm7 | ||
| | | subminor 7th | ||
| sC | |||
| sC | |||
|- | |- | ||
| | | 59 | ||
| | | 983.3 | ||
| | | 30/17, 44/25 | ||
| | | vm7 | ||
| | | | downminor 7th | ||
| | | vC | ||
| | | lm7 | ||
| | | little minor 7th | ||
| lC | |||
| kC | |||
|- | |- | ||
| | | 60 | ||
| 1000.0 | |||
| | | 16/9 | ||
| | | m7 | ||
| | | | minor 7th | ||
| | | C | ||
| | | m7 | ||
| minor 7th | |||
| C | |||
| | | C | ||
|- | |- | ||
| | | 61 | ||
| | | 1016.7 | ||
| | | 9/5 | ||
| | | ^m7 | ||
| | | | upminor 7th | ||
| | | ^C | ||
| | | Km7 | ||
| | | classic/comma-wide minor 7th | ||
| KC | |||
| KC | |||
|- | |- | ||
| | | 62 | ||
| | | 1033.3 | ||
| | | 20/11 | ||
| ^^m7, v~7 | |||
| | | dupminor 7th, downmid 7th | ||
| | | ^^C | ||
| | | Om7 | ||
| | | on minor 7th | ||
| OC | |||
| SC | |||
|- | |- | ||
| | | | 63 | ||
| | | | 1050.0 | ||
| | | 11/6 | ||
| | | ~7 | ||
| | | mid 7th | ||
| | | ^<sup>3</sup>C | ||
| | | N7, hd8 | ||
| | | neutral 7th, hypo dim 8ve | ||
| UC/uC#, hDb | |||
| UC/uC#, uDb | |||
|- | |- | ||
| | | 64 | ||
| | | 1066.7 | ||
| | | 13/7, 24/13, 50/27 | ||
| | | ^~7, vvM7 | ||
| | | | upmid 7th, dudmajor 7th | ||
| | | vvC# | ||
| | | oM7, sd8 | ||
| | | off major 7th, sub dim 8ve | ||
| oC#, sDb | |||
| sC#, sDb | |||
|- | |- | ||
| | | 65 | ||
| | | 1083.3 | ||
| | | 15/8, 28/15 | ||
| | | vM7 | ||
| | | | downmajor 7th | ||
| | | vC# | ||
| | | kM7, ld8 | ||
| | | classic major 7th, little dim 8ve | ||
| kC#, lDb | |||
| kC#, kDb | |||
|- | |- | ||
| | | | 66 | ||
| | | | 1100.0 | ||
| | | 17/9, 32/17, 36/19 | ||
| | | M7 | ||
| | | major 7th | ||
| | | C# | ||
| | | M7, d8 | ||
| | | major 7th, dim 8ve | ||
| C#, Db | |||
| C#, Db | |||
|- | |- | ||
| | | 67 | ||
| | | 1116.7 | ||
| | | 19/10, 21/11, 40/21 | ||
| | | ^M7 | ||
| | | | upmajor 7th | ||
| | | ^C# | ||
| | | LM7, Kd8 | ||
| | | large major 7th, comma-wide dim 8ve | ||
| LC#, KDb | |||
| KC#, KDb | |||
|- | |- | ||
| | | 68 | ||
| | | 1133.3 | ||
| | | 25/13, 27/14, 48/25, 52/27 | ||
| | | ^^M7 | ||
| | | | dupmajor 7th | ||
| | | ^^C# | ||
| | | SM7, KKd8 | ||
| | | supermajor 7th, classic dim 8ve | ||
| SC#, KKDb | |||
| SC#, SDb, (KKDb) | |||
|- | |- | ||
| | | 69 | ||
| | | 1150.0 | ||
| | | 35/18, 39/20, 64/33 | ||
| | | ^<sup>3</sup>M7, v<sup>3</sup>8 | ||
| | | | trupmajor 7th, trud octave | ||
| | | ^<sup>3</sup>C#, v<sup>3</sup>D | ||
| | | HM7, u8, h8 | ||
| | | hypermajor 7th, unter 8ve, hypo 8ve | ||
| HC#, uD, hD | |||
| UC#, uDb, uD | |||
|- | |- | ||
| | | 70 | ||
| | | 1166.7 | ||
| | | 49/25, 55/28, 63/32, 88/45, 96/49 | ||
| | | vv8 | ||
| | | | dud octave | ||
| | | vvD | ||
| | | s8, o8 | ||
| | | sub 8ve, off 8ve | ||
| sD, oD | |||
| sD | |||
|- | |- | ||
| | | 71 | ||
| | | 1183.3 | ||
| | | 99/50, 160/81, 180/91, 196/99, 208/105 | ||
| | | v8 | ||
| | | | down octave | ||
| | | vD | ||
| | | k8, l8 | ||
| | | comma-narrow 8ve, little 8ve | ||
| kD, lD | |||
| kD | |||
|- | |- | ||
| | | | 72 | ||
| | | | 1200.0 | ||
| | | 2/1 | ||
| | | P8 | ||
| | | | perfect octave | ||
| | | D | ||
| P8 | |||
| perfect octave | |||
| D | |||
| D | |||
|} | |||
<references group="note" /> | |||
=== Interval quality and chord names in color notation === | |||
Combining ups and downs notation with [[color notation]], qualities can be loosely associated with colors: | |||
{| class="wikitable center-all" | |||
| | |- | ||
! Quality | |||
! [[Color notation|Color]] | |||
! Monzo format | |||
! Examples | |||
|- | |||
| dudminor | |||
| zo | |||
| (a b 0 1) | |||
| 7/6, 7/4 | |||
|- | |||
| minor | |||
| fourthward wa | |||
| (a b), b < -1 | |||
| 32/27, 16/9 | |||
|- | |- | ||
| | | upminor | ||
| gu | |||
| | | (a b -1) | ||
| | | 6/5, 9/5 | ||
| | |||
|- | |- | ||
| | | | rowspan="2" | dupminor, <br>downmid | ||
| | | luyo | ||
| (a b 1 0 -1) | |||
| | | 15/11 | ||
| | |||
|- | |- | ||
| | | tho | ||
| | | (a b 0 0 0 1) | ||
| 13/8, 13/9 | |||
| | |||
|- | |- | ||
| | | | rowspan="2" | mid | ||
| | | ilo | ||
| | | (a b 0 0 1) | ||
| 11/9, 11/6 | |||
| | |||
|- | |- | ||
| | | lu | ||
| (a b 0 0 -1) | |||
| 12/11, 18/11 | |||
| | |||
| | |||
|- | |- | ||
| | | | rowspan="2" | upmid, <br>dudmajor | ||
| logu | |||
| | | (a b -1 0 1) | ||
| | | 11/10 | ||
|- | |- | ||
| | | thu | ||
| | | (a b 0 0 0 -1) | ||
| 16/13, 18/13 | |||
| | |||
|- | |- | ||
| | | downmajor | ||
| | | yo | ||
| | | (a b 1) | ||
| 5/4, 5/3 | |||
| | |||
|- | |- | ||
| | | major | ||
| fifthward wa | |||
| | | (a b), b > 1 | ||
| | | 9/8, 27/16 | ||
| | |||
|- | |- | ||
| | | dupmajor | ||
| | | ru | ||
| | | (a b 0 -1) | ||
| 9/7, 12/7 | |||
| | |||
|- | |- | ||
| | | | rowspan="2" | trupmajor, <br>trudminor | ||
| | | thogu | ||
| | | (a b -1 0 0 1) | ||
| 13/10 | |||
| | |||
|- | |- | ||
| | | thuyo | ||
| (a b 1 0 0 -1) | |||
| 15/13 | |||
| | |} | ||
| | All 72edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads: | ||
| | |||
{| class="wikitable center-all" | |||
| | |- | ||
! [[Color notation|Color of the 3rd]] | |||
! JI chord | |||
! Notes as edosteps | |||
! Notes of C chord | |||
! Written name | |||
! Spoken name | |||
|- | |||
| zo | |||
| 6:7:9 | |||
| 0-16-42 | |||
| C vvEb G | |||
| Cvvm | |||
| C dudminor | |||
|- | |||
| gu | |||
| 10:12:15 | |||
| 0-19-42 | |||
| C ^Eb G | |||
| C^m | |||
| C upminor | |||
|- | |- | ||
| | | ilo | ||
| | | 18:22:27 | ||
| | | 0-21-42 | ||
| | | C v<span style="font-size: 90%; vertical-align: super;">3</span>E G | ||
| C~ | |||
| C mid | |||
| | |||
|- | |- | ||
| | | yo | ||
| | | 4:5:6 | ||
| | | 0-23-42 | ||
| | | C vE G | ||
| | | Cv | ||
| C downmajor or C down | |||
| | |||
|- | |- | ||
| | | ru | ||
| | | 14:18:27 | ||
| | | 0-26-42 | ||
| C ^^E G | |||
| C^^ | |||
| | | C dupmajor or C dup | ||
| | |||
| | |||
|} | |} | ||
For a more complete list, see [[Ups and downs notation #Chord names in other EDOs]]. | |||
{| | === Relationship between primes and rings === | ||
|- | In 72tet, there are 6 [[ring number|rings]]. 12edo is the plain ring; thus every 6 degrees is the 3-limit. | ||
Then, after each subsequent degree in reverse, a new prime limit is unveiled from it: | |||
* −1 degree (the down ring) corrects 81/64 to 5/4 via 80/81 | |||
* −2 degrees (the dud ring) corrects 16/9 to 7/4 via 63/64 | |||
* +3 degrees (the trup ring) corrects 4/3 to 11/8 via 33/32 | |||
* +2 degrees (the dup ring) corrects 128/81 to 13/8 via 1053/1024 | |||
* 0 degrees (the plain ring) corrects 256/243 to 17/16 via 4131/4096 | |||
* 0 degrees (the plain ring) corrects 32/27 to 19/16 via 513/512 | |||
Thus the product of a ratio's monzo with {{map| 0 0 -1 -2 3 2 0 0 }}, modulo 6, specifies which ring the ratio lies on. | |||
== Notations == | |||
=== Ups and downs notation === | |||
72edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc. | |||
{{Sharpness-sharp6a}} | |||
Half-sharps and half-flats can be used to avoid triple arrows: | |||
{{Sharpness-sharp6b}} | |||
[[Alternative symbols for ups and downs notation#Sharp-6| Alternative ups and downs]] have sharps and flats with arrows borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp6}} | |||
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals: | |||
{{Sharpness-sharp6-qt}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[65edo#Sagittal notation|65-EDO]] and [[79edo#Sagittal notation|79]], and is a superset of the notations for EDOs [[36edo#Sagittal notation|36]], [[24edo#Sagittal notation|24]], [[18edo#Sagittal notation|18]], [[12edo#Sagittal notation|12]], [[8edo#Sagittal notation|8]], and [[6edo#Sagittal notation|6]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:72-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 719 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:72-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 695 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:72-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 711 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 120 106 [[81/80]] | |||
rect 120 80 220 106 [[64/63]] | |||
rect 220 80 340 106 [[33/32]] | |||
default [[File:72-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
From the appendix to [[The Sagittal Songbook]] by [[Jacob Barton|Jacob A. Barton]], a diagram of how to notate 72edo in the Revo flavor of Sagittal: | |||
[[File:72edo Sagittal.png|800px]] | |||
=== Ivan Wyschnegradsky's notation === | |||
{{Sharpness-sharp6-iw|72}} | |||
== Approximation to JI == | |||
[[File:72ed2.svg|250px|thumb|right|none|alt=alt : Your browser has no SVG support.|Selected intervals approximated in 72edo]] | |||
=== Interval mappings === | |||
{{Q-odd-limit intervals|72}} | |||
=== Zeta properties === | |||
72edo is the ninth [[zeta integral edo]], as well as being a peak and gap edo, and the maximum value of the [[the Riemann zeta function and tuning#The Z function|Z function]] in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72. | |||
[[File:plot72.png|alt=plot72.png|plot72.png]] | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |- | ||
| | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |- | ||
| | ! [[TE error|Absolute]] (¢) | ||
! [[TE simple badness|Relative]] (%) | |||
| | |||
|- | |- | ||
| | | 2.3.5 | ||
| | | 15625/15552, 531441/524288 | ||
| | | {{Mapping| 72 114 167 }} | ||
| | | +0.839 | ||
| 0.594 | |||
| 3.56 | |||
|- | |- | ||
| | | 2.3.5.7 | ||
| | | 225/224, 1029/1024, 4375/4374 | ||
| | | {{Mapping| 72 114 167 202 }} | ||
| | | +0.822 | ||
| 0.515 | |||
| 3.09 | |||
|- | |- | ||
| | | 2.3.5.7.11 | ||
| | | 225/224, 243/242, 385/384, 4000/3993 | ||
| | | {{Mapping| 72 114 167 202 249 }} | ||
| | | +0.734 | ||
| 0.493 | |||
| 2.96 | |||
|- | |- | ||
| | | 2.3.5.7.11.13 | ||
| | | 169/168, 225/224, 243/242, 325/324, 385/384 | ||
| | | {{Mapping| 72 114 167 202 249 266 }} | ||
| | | +0.936 | ||
| 0.638 | |||
| 3.82 | |||
|- | |- | ||
| | | 2.3.5.7.11.13.17 | ||
| | | 169/168, 221/220, 225/224, 243/242, 273/272, 325/324 | ||
| | | {{Mapping| 72 114 167 202 249 266 294 }} | ||
| | | +0.975 | ||
| 0.599 | |||
| 3.59 | |||
|- | |- | ||
| | | 2.3.5.7.11.13.17.19 | ||
| | | 153/152, 169/168, 210/209, 221/220, 225/224, 243/242, 273/272 | ||
| | | {{Mapping| 72 114 167 202 249 266 294 306 }} | ||
| | | +0.780 | ||
| 0.762 | |||
| 4.57 | |||
|} | |} | ||
* 72et has lower relative errors than any previous equal temperaments in the 7-, 11-, 13-, 17-, and 19-limit. The next equal temperaments doing better in these subgroups are [[99edo|99]], [[270edo|270]], [[224edo|224]], [[494edo|494]], and [[217edo|217]], respectively. | |||
=== Commas === | |||
Commas tempered out by 72edo include… | |||
{| class="wikitable" | {| class="commatable wikitable center-1 center-2 right-4" | ||
|- | |||
! [[Harmonic limit|Prime<br>limit]] | |||
! [[Ratio]]<ref group="note">{{rd}}</ref> | |||
! [[Monzo]] | |||
! [[Cents]] | |||
! Name(s) | |||
|- | |||
| 3 | |||
| [[531441/524288|(12 digits)]] | |||
| {{Monzo| -19 12 }} | |||
| 23.46 | |||
| Pythagorean comma | |||
|- | |||
| 5 | |||
| [[15625/15552]] | |||
| {{Monzo| -6 -5 6 }} | |||
| 8.11 | |||
| Kleisma | |||
|- | |||
| 5 | |||
| [[34171875/33554432|(16 digits)]] | |||
| {{Monzo| -25 7 6 }} | |||
| 31.57 | |||
| [[Ampersand comma]] | |||
|- | |||
| 5 | |||
| [[129140163/128000000|(18 digits)]] | |||
| {{Monzo| -13 17 -6 }} | |||
| 15.35 | |||
| [[Graviton]] | |||
|- | |||
| 5 | |||
| <abbr title="7629394531250/7625597484987">(26 digits)</abbr> | |||
| {{Monzo| 1 -27 18 }} | |||
| 0.86 | |||
| [[Ennealimma]] | |||
|- | |||
| 7 | |||
| [[225/224]] | |||
| {{Monzo| -5 2 2 -1 }} | |||
| 7.71 | |||
| Marvel comma | |||
|- | |||
| 7 | |||
| [[1029/1024]] | |||
| {{Monzo| -10 1 0 3 }} | |||
| 8.43 | |||
| Gamelisma | |||
|- | |||
| 7 | |||
| [[2401/2400]] | |||
| {{Monzo| -5 -1 -2 4 }} | |||
| 0.72 | |||
| Breedsma | |||
|- | |||
| 7 | |||
| [[4375/4374]] | |||
| {{Monzo| -1 -7 4 1 }} | |||
| 0.40 | |||
| Ragisma | |||
|- | |||
| 7 | |||
| [[16875/16807]] | |||
| {{Monzo| 0 3 4 -5 }} | |||
| 6.99 | |||
| Mirkwai comma | |||
|- | |||
| 7 | |||
| [[19683/19600]] | |||
| {{Monzo| -4 9 -2 -2 }} | |||
| 7.32 | |||
| Cataharry comma | |||
|- | |||
| 7 | |||
| <abbr title="420175/419904">(12 digits)</abbr> | |||
| {{Monzo | -6 -8 2 5 }} | |||
| 1.12 | |||
| [[Wizma]] | |||
|- | |||
| 7 | |||
| <abbr title="250047/250000">(12 digits)</abbr> | |||
| {{Monzo| -4 6 -6 3 }} | |||
| 0.33 | |||
| [[Landscape comma]] | |||
|- | |||
| 11 | |||
| [[243/242]] | |||
| {{Monzo| -1 5 0 0 -2}} | |||
| 7.14 | |||
| Rastma | |||
|- | |||
| 11 | |||
| [[385/384]] | |||
| {{Monzo| -7 -1 1 1 1 }} | |||
| 4.50 | |||
| Keenanisma | |||
|- | |||
| 11 | |||
| [[441/440]] | |||
| {{Monzo| -3 2 -1 2 -1 }} | |||
| 3.93 | |||
| Werckisma | |||
|- | |||
| 11 | |||
| [[540/539]] | |||
| {{Monzo| 2 3 1 -2 -1 }} | |||
| 3.21 | |||
| Swetisma | |||
|- | |||
| 11 | |||
| [[1375/1372]] | |||
| {{Monzo| -2 0 3 -3 1 }} | |||
| 3.78 | |||
| Moctdel comma | |||
|- | |||
| 11 | |||
| [[3025/3024]] | |||
| {{Monzo| -4 -3 2 -1 2 }} | |||
| 0.57 | |||
| Lehmerisma | |||
|- | |||
| 11 | |||
| [[4000/3993]] | |||
| {{Monzo| 5 -1 3 0 -3 }} | |||
| 3.03 | |||
| Wizardharry comma | |||
|- | |||
| 11 | |||
| [[6250/6237]] | |||
| {{Monzo| 1 -4 5 -1 -1 }} | |||
| 3.60 | |||
| Liganellus comma | |||
|- | |||
| 11 | |||
| [[9801/9800]] | |||
| {{Monzo| -3 4 -2 -2 2 }} | |||
| 0.18 | |||
| Kalisma | |||
|- | |||
| 11 | |||
| <abbr title="1771561/1769472">(14 digits)</abbr> | |||
| {{Monzo| 16 -3 0 0 6 }} | |||
| 2.04 | |||
| [[Nexus comma]] | |||
|- | |||
| 13 | |||
| [[169/168]] | |||
| {{Monzo| -3 -1 0 -1 0 2 }} | |||
| 10.27 | |||
| Buzurgisma | |||
|- | |||
| 13 | |||
| [[325/324]] | |||
| {{Monzo| -2 -4 2 0 0 1 }} | |||
| 5.34 | |||
| Marveltwin comma | |||
|- | |||
| 13 | |||
| [[351/350]] | |||
| {{Monzo| -1 3 -2 -1 0 1 }} | |||
| 4.94 | |||
| Ratwolfsma | |||
|- | |||
| 13 | |||
| [[364/363]] | |||
| {{Monzo| 2 -1 0 1 -2 1 }} | |||
| 4.76 | |||
| Minor minthma | |||
|- | |||
| 13 | |||
| [[625/624]] | |||
| {{Monzo| -4 -1 4 0 0 -1 }} | |||
| 2.77 | |||
| Tunbarsma | |||
|- | |||
| 13 | |||
| [[676/675]] | |||
| {{Monzo| 2 -3 -2 0 0 2 }} | |||
| 2.56 | |||
| Island comma | |||
|- | |- | ||
| 13 | |||
| [[729/728]] | |||
| {{Monzo| -3 6 0 -1 0 -1 }} | |||
| 2.38 | |||
| Squbema | |||
|- | |- | ||
| | | 13 | ||
| | | [[1001/1000]] | ||
| | | {{Monzo| -3 0 -3 1 1 1 }} | ||
| 1.73 | |||
| | | Sinbadma | ||
| | |||
|- | |- | ||
| | | 13 | ||
| | | [[1575/1573]] | ||
| | | {{Monzo| 2 2 1 -2 -1 }} | ||
| | | 2.20 | ||
| Nicola | |||
| | |||
|- | |- | ||
| | | 13 | ||
| | | [[1716/1715]] | ||
| | | {{Monzo| 2 1 -1 -3 1 1 }} | ||
| 1.01 | |||
| | | Lummic comma | ||
| | |||
|- | |- | ||
| | | 13 | ||
| | | [[2080/2079]] | ||
| {{Monzo| 5 -3 1 -1 -1 1 }} | |||
| | | 0.83 | ||
| Ibnsinma | |||
| | |||
|- | |- | ||
| | | 13 | ||
| | | [[6656/6655]] | ||
| | | {{Monzo| 9 0 -1 0 -3 1 }} | ||
| | | 0.26012 | ||
| Jacobin comma | |||
| | |||
|} | |} | ||
<references group="note" /> | |||
=== Rank-2 temperaments === | |||
* [[List of edo-distinct 72et rank two temperaments]] | |||
72edo provides the [[optimal patent val]] for [[miracle]] and [[wizard]] in the 7-limit, miracle, [[catakleismic]], [[bikleismic]], [[compton]], [[ennealimnic]], [[ennealiminal]], [[enneaportent]], [[marvolo]] and [[catalytic]] in the 11-limit, and catakleismic, bikleismic, compton, [[comptone]], [[enneaportent]], [[ennealim]], catalytic, marvolo, [[manna]], [[hendec]], [[lizard]], [[neominor]], [[hours]], and [[semimiracle]] in the 13-limit. | |||
{| class="wikitable" | {| class="wikitable center-all left-5" | ||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |- | ||
! | ! Periods<br>per 8ve | ||
! | ! Generator* | ||
! | ! Cents* | ||
! Associated<br>ratio* | |||
! Temperament | |||
|- | |- | ||
| 1 | |||
| 1\72 | |||
| | [[Quincy | | 16.7 | ||
| 105/104 | |||
| [[Quincy]] | |||
|- | |- | ||
| 1 | |||
| 5\72 | |||
| | [[ | | 83.3 | ||
| 21/20 | |||
| [[Marvolo]] | |||
|- | |- | ||
| 1 | |||
| 7\72 | |||
| | [[Miracle | | 116.7 | ||
| 15/14 | |||
| [[Miracle]] / benediction / manna | |||
|- | |- | ||
| 1 | |||
| | | 17\72 | ||
| | | | 283.3 | ||
| 13/11 | |||
| [[Neominor]] | |||
|- | |- | ||
| 1 | |||
| | | 19\72 | ||
| | | | 316.7 | ||
| 6/5 | |||
| [[Catakleismic]] | |||
|- | |- | ||
| 1 | |||
| | | 25\72 | ||
| | [[ | | 416.7 | ||
| 14/11 | |||
| [[Sqrtphi]] | |||
|- | |- | ||
| 1 | |||
| | | 29\72 | ||
| | [[ | | 483.3 | ||
| 45/34 | |||
| [[Hemiseven]] | |||
|- | |- | ||
| 1 | |||
| | | 31\72 | ||
| | | | 516.7 | ||
| 27/20 | |||
| [[Marvo]] / [[zarvo]] | |||
|- | |- | ||
| 1 | |||
| | | 35\72 | ||
| | [[ | | 583.3 | ||
| 7/5 | |||
| [[Cotritone]] | |||
|- | |- | ||
| | | 2 | ||
| | | 5\72 | ||
| | | | 83.3 | ||
| 21/20 | |||
| [[Harry]] | |||
|- | |- | ||
| | | 2 | ||
| | | 7\72 | ||
| | [[ | | 116.7 | ||
| 15/14 | |||
| [[Semimiracle]] | |||
|- | |- | ||
| | | 2 | ||
| | | 11\72 | ||
| | [[ | | 183.3 | ||
| 10/9 | |||
| [[Unidec]] / hendec | |||
|- | |- | ||
| 2 | |||
| | | 21\72<br>(19\72) | ||
| | | | 316.7<br>(283.3) | ||
| 6/5<br>(13/11) | |||
| [[Bikleismic]] | |||
|- | |- | ||
| 2 | |||
| | | 23\72<br>(13\72) | ||
| | [[ | | 383.3<br>(216.7) | ||
| 5/4<br>(17/15) | |||
| [[Wizard]] / lizard / gizzard | |||
|- | |- | ||
| | | 3 | ||
| | | 11\72 | ||
| | | | 183.3 | ||
| 10/9 | |||
| [[Mirkat]] | |||
|- | |- | ||
| | | 3 | ||
| | | 19\72<br>(5\72) | ||
| | [[ | | 316.7<br>(83.3) | ||
| 6/5<br>(21/20) | |||
| [[Tritikleismic]] | |||
|- | |- | ||
| | | 4 | ||
| | | 19\72<br>(1\72) | ||
| | [[ | | 316.7<br>(16.7) | ||
| 6/5<br>(105/104) | |||
| [[Quadritikleismic]] | |||
|- | |- | ||
| | 2 | | 8 | ||
| | | | 34\72<br>(2\72) | ||
| | | 566.7<br>(33.3) | ||
| 168/121<br>(55/54) | |||
| [[Octowerck]] / octowerckis | |||
|- | |- | ||
| | | 8 | ||
| | | 35\72<br>(1\72) | ||
| | | | 583.3<br>(16.7) | ||
| 7/5<br>(100/99) | |||
| [[Octoid]] / octopus | |||
|- | |- | ||
| | 3 | | 9 | ||
| | 5 | | 19\72<br>(3\72) | ||
| 316.7<br>(50.0) | |||
| 6/5<br>(36/35) | |||
| [[Ennealimmal]] / ennealimnic | |||
|- | |- | ||
| | | | 9 | ||
| | | 23\72<br>(1\72) | ||
| | | | 383.3<br>(16.7) | ||
| 5/4<br>(105/104) | |||
| [[Enneaportent]] | |||
|- | |- | ||
| | | 12 | ||
| | | 23\72<br>(1\72) | ||
| | [[ | | 383.3<br>(16.7) | ||
| 5/4<br>(100/99) | |||
| [[Compton]] / comptone | |||
|- | |- | ||
| | | 18 | ||
| | | 19\72<br>(1\72) | ||
| | [[ | | 316.7<br>(16.7) | ||
| 6/5<br>(105/104) | |||
| [[Hemiennealimmal]] | |||
|- | |- | ||
| | | | 24 | ||
| | 5 | | 23\72<br>(1\72) | ||
| | | 383.3<br>(16.7) | ||
| 5/4<br>(105/104) | |||
| [[Hours]] | |||
|- | |- | ||
| | | 36 | ||
| | | 23\72<br>(1\72) | ||
| | | | 383.3<br>(16.7) | ||
| | | 5/4<br>(81/80) | ||
| | | | [[Gamelstearn]] | ||
| | |} | ||
| | <nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | ||
== Scales == | |||
| | * [[Smithgw72a]], [[smithgw72b]], [[smithgw72c]], [[smithgw72d]], [[smithgw72e]], [[smithgw72f]], [[smithgw72g]], [[smithgw72h]], [[smithgw72i]], [[smithgw72j]] | ||
| | * [[Blackjack]], [[miracle_8]], [[miracle_10]], [[miracle_12]], [[miracle_12a]], [[miracle_24hi]], [[miracle_24lo]] | ||
* [[Keenanmarvel]], [[xenakis_chrome]], [[xenakis_diat]], [[xenakis_schrome]] | |||
* [[Genus24255et72|Euler(24255) genus in 72 equal]] | |||
* [[JuneGloom]] | |||
* [[Harry Partch's 43-tone scale]]: 1 2 2 2 2 1 1 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 2 2 2 1 | |||
* [[Magnetosphere scale|Magnetosphere]], [[Blackened skies]], [[Lost spirit]] | |||
* [[5- to 10-tone scales in 72edo]] | |||
=== Harmonic scale === | |||
Mode 8 of the harmonic series—[[overtone scale|harmonics 8 through 16]], octave repeating—is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament). | |||
{| class="wikitable" | |||
|- | |- | ||
| | | ! Harmonics in "Mode 8": | ||
| | | | 8 | ||
| | | | | ||
| 9 | |||
| | |||
| 10 | |||
| | |||
| 11 | |||
| | |||
| 12 | |||
| | |||
| 13 | |||
| | |||
| 14 | |||
| | |||
| 15 | |||
| | |||
| 16 | |||
|- | |- | ||
| | 8 | ! …as JI Ratio from 1/1: | ||
| | 2 | | 1/1 | ||
| | | | | ||
| 9/8 | |||
| | |||
| 5/4 | |||
| | |||
| 11/8 | |||
| | |||
| 3/2 | |||
| | |||
| 13/8 | |||
| | |||
| 7/4 | |||
| | |||
| 15/8 | |||
| | |||
| 2/1 | |||
|- | |- | ||
| | 8 | ! …in cents: | ||
| | | | 0 | ||
| | | | | ||
| 203.9 | |||
| | |||
| 386.3 | |||
| | |||
| 551.3 | |||
| | |||
| 702.0 | |||
| | |||
| 840.5 | |||
| | |||
| 968.8 | |||
| | |||
| 1088.3 | |||
| | |||
| 1200.0 | |||
|- | |- | ||
| | | ! Nearest degree of 72edo: | ||
| | | | 0 | ||
| | | | | ||
| 12 | |||
| | |||
| 23 | |||
| | |||
| 33 | |||
| | |||
| 42 | |||
| | |||
| 50 | |||
| | |||
| 58 | |||
| | |||
| 65 | |||
| | |||
| 72 | |||
|- | |- | ||
| | | ! …in cents: | ||
| | 3 | | 0 | ||
| | | | | ||
| 200.0 | |||
| | |||
| 383.3 | |||
| | |||
| 550.0 | |||
| | |||
| 700.0 | |||
| | |||
| 833.3 | |||
| | |||
| 966.7 | |||
| | |||
| 1083.3 | |||
| | |||
| 1200.0 | |||
|- | |- | ||
| | 12 | ! Steps as Freq. Ratio: | ||
| | | | | ||
| | | | 9:8 | ||
| | |||
| 10:9 | |||
| | |||
| 11:10 | |||
| | |||
| 12:11 | |||
| | |||
| 13:12 | |||
| | |||
| 14:13 | |||
| | |||
| 15:14 | |||
| | |||
| 16:15 | |||
| | |||
|- | |- | ||
| | | ! …in cents: | ||
| | | | | ||
| | | | 203.9 | ||
| | |||
| 182.4 | |||
| | |||
| 165.0 | |||
| | |||
| 150.6 | |||
| | |||
| 138.6 | |||
| | |||
| 128.3 | |||
| | |||
| 119.4 | |||
| | |||
| 111.7 | |||
| | |||
|- | |- | ||
| | | ! Nearest degree of 72edo: | ||
| | | | | ||
| | | | 12 | ||
| | |||
| 11 | |||
| | |||
| 10 | |||
| | |||
| 9 | |||
| | |||
| 8 | |||
| | |||
| 8 | |||
| | |||
| 7 | |||
| | |||
| 7 | |||
| | |||
|- | |- | ||
| | | ! …in cents: | ||
| | | | | ||
| | | | 200.0 | ||
| | |||
| 183.3 | |||
| | |||
| 166.7 | |||
| | |||
| 150.0 | |||
| | |||
| 133.3 | |||
| | |||
| 133.3 | |||
| | |||
| 116.7 | |||
| | |||
| 116.7 | |||
| | |||
|} | |} | ||
= | == Instruments == | ||
If one can get six 12edo instruments tuned a twelfth-tone apart, it is possible to use these instruments in combination to play the full gamut of 72edo (see Music). | |||
One can also use a skip fretting system: | |||
* [[Skip fretting system 72 2 27]] | |||
Alternatively, an appropriately mapped keyboard of sufficient size is usable for playing 72edo: | |||
* [[Lumatone mapping for 72edo]] | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/VwVp3RVao_k ''microtonal improvisation in 72edo''] (2025) | |||
[[ | ; [[Ambient Esoterica]] | ||
* [https://www.youtube.com/watch?v=seWcDAoQjxY ''Goetic Synchronities''] (2023) | |||
* [https://www.youtube.com/watch?v=CrcdM1e2b6Q ''Rainy Day Generative Pillow''] (2024) | |||
; [[Jake Freivald]] | |||
[http:// | * [http://micro.soonlabel.com/gene_ward_smith/Others/Freivald/Lazy%20Sunday.mp3 ''Lazy Sunday'']{{dead link}} in the [[lazysunday]] scale | ||
{{Wikipedia|In vain (Haas)}} | |||
; [[Georg Friedrich Haas]] | |||
* [https://www.youtube.com/watch?v=ix4yA-c-Pi8 ''Blumenstück''] (2000) | |||
* [https://youtu.be/cmX-h7_us7A ''in vain''] (2000) ([https://www.universaledition.com/georg-friedrich-haas-278/works/in-vain-7566 score]) | |||
; [[Claudi Meneghin]] | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Meneghin/Claudi-Meneghin-Twinkle-canon-72-edo.mp3 ''Twinkle canon – 72 edo'']{{dead link}} | |||
* [https://www.youtube.com/watch?v=zR0NDgh4944 ''The Miracle Canon'', 3-in-1 on a Ground] | |||
* [https://www.youtube.com/watch?v=w6Bckog1eOM ''Sicilienne in Miracle''] | |||
* [https://www.youtube.com/watch?v=QKeZLtFHfNU ''Arietta with 5 Variations'', for Organ] (2024) | |||
; [[Prent Rodgers]] | |||
* [http://micro.soonlabel.com/gene_ward_smith/Others/Rodgers/drum12a-c-t9.mp3 ''June Gloom #9'']{{dead link}} | |||
; [[Gene Ward Smith]] | |||
[[ | * [https://www.archive.org/details/Kotekant ''Kotekant''] [https://www.archive.org/download/Kotekant/kotekant.mp3 play] (2010) | ||
[[ | ;[[Ivan Wyschnegradsky]] | ||
* [https://www.youtube.com/watch?v=RCcJHCkYQ6U Arc-en-ciel, for 6 pianos in twelfth tones, Op. 37] (1956) | |||
[[ | ; [[James Tenney]] | ||
* [https://www.youtube.com/watch?v=jGsxqU1PhZs&list=OLAK5uy_mKyMEMZW7noeLncJnu-JT65go8w7403DA ''Changes for Six Harps''] | |||
[[ | ; [[Xeno Ov Eleas]] | ||
* [https://www.youtube.com/watch?v=cx7I0NWem5w ''Χenomorphic Ghost Storm''] (2022) | |||
[[ | == External links == | ||
* [http://orthodoxwiki.org/Byzantine_Chant OrthodoxWiki Article on Byzantine chant, which uses 72edo] | |||
* [http://www.ekmelic-music.org/en/ Ekmelic Music Society/Gesellschaft für Ekmelische Musik], a group of composers and researchers dedicated to 72edo music | |||
* [http://72note.com/site/original.html Rick Tagawa's 72edo site], including theory and composers' list | |||
* [https://www.myspace.com/dawier Danny Wier, composer and musician who specializes in 72-edo] | |||
* [http://tonalsoft.com/enc/number/72edo.aspx 72-ed2 / 72-edo / 72-ET / 72-tone equal-temperament] on [[Tonalsoft Encyclopedia]] | |||
[[Category:Listen]] | |||
[[Category:Compton]] | |||
[[Category:Marvel]] | |||
[[Category:Miracle]] | |||
[[Category: | [[Category:Prodigy]] | ||
[[Category: | [[Category:Wizard]] | ||
[[Category: | |||
[[Category: | |||
[[Category: | |||
[[Category: |