44edf: Difference between revisions

Xenllium (talk | contribs)
Created page with "'''44EDF''' is the equal division of the just perfect fifth into 44 parts of 15.9535 cents each, corresponding to 75.2185 edo. It is related to the regula..."
Tags: Mobile edit Mobile web edit
 
m Theory: cleanup
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
'''44EDF''' is the [[EDF|equal division of the just perfect fifth]] into 44 parts of 15.9535 [[cent|cents]] each, corresponding to 75.2185 [[edo]]. It is related to the regular temperament which tempers out |183 -51 -44> in the 5-limit, which is supported by 301, 376, 677, 1053, 1429, 1730, 2407, and 2783 EDOs.
{{Todo|cleanup|add examples|text=add examples of how music can be made with this tuning, stuff like instruments tuned to it, 4 to 12 note scales within it, etc.}}
{{Infobox ET}}
{{ED intro}}
 
== Theory ==
44edf corresponds to 75.2185[[edo]]. It is related to the [[regular temperament]] which [[tempering out|tempers out]] {{monzo| 183 -51 -44 }} in the [[5-limit]], which is supported by {{EDOs| 301-, 376-, 677-, 1053-, 1429-, 1730-, 2407-, and 2783edo }}.
 
=== Harmonics ===
{{Harmonics in equal|44|3|2|intervals=prime}}
 
== Related regular temperaments ==
===5-limit 677&1053===
Comma: |183 -51 -44>
 
POTE generator: ~|-104 29 25> = 15.9540
 
Mapping: [<1 1 3|, <0 44 -51|]
 
EDOs: {{EDOs|75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836}}
 
===2.3.5.11 677&1053===
Commas: 184549376/184528125, 38084983750656/38060880859375
 
POTE generator: ~|-104 29 25> = 15.9535
 
Mapping: [<1 1 3 1|, <0 44 -51 185|]
 
EDOs: {{EDOs|301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084}}
 
===13-limit 677&1053===
Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000
 
POTE generator: ~|-104 29 25> = 15.9540
 
Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|]
 
EDOs: {{EDOs|677, 1053, 1730, 2407, 3084, 4137}}


==Intervals==
==Intervals==
Line 9: Line 45:
! | comments
! | comments
|-
|-
| | 0
| colspan="2"| 0
| | 0.0000
| | '''exact [[1/1]]'''
| | '''exact [[1/1]]'''
| |  
| |  
Line 20: Line 55:
|-
|-
| | 2
| | 2
| | 31.9070
| | 31.907
| |  
| |  
| |  
| |  
Line 65: Line 100:
|-
|-
| | 11
| | 11
| | 175.4888
| | 175.48875
| | 31/28
| | 31/28
| |  
| |  
Line 111: Line 146:
| | 20
| | 20
| | 319.0705
| | 319.0705
| | 101/84
| |6/5
| |  
| |  
|-
|-
| | 21
| | 21
| | 335.0240
| | 335.024
| |  
| |  
| |  
| |  
Line 125: Line 160:
|-
|-
| | 23
| | 23
| | 366.9310
| | 366.931
| |  
| |  
| |  
| |  
Line 131: Line 166:
| | 24
| | 24
| | 382.8845
| | 382.8845
| | 126/101
| |5/4
| |  
| |  
|-
|-
Line 141: Line 176:
| | 26
| | 26
| | 414.7916
| | 414.7916
| |  
| |14/11
| |  
| |  
|-
|-
| | 27
| | 27
| | 430.7451
| | 430.7451
| |  
| |9/7
| |  
| |  
|-
|-
Line 166: Line 201:
| | 31
| | 31
| | 494.5592
| | 494.5592
| |  
| |4/3
| |  
| |  
|-
|-
Line 175: Line 210:
|-
|-
| | 33
| | 33
| | 526.4663
| | 526.46625
| | 42/31
| | 42/31, 27/20
| |  
| |  
|-
|-
Line 206: Line 241:
| | 39
| | 39
| | 622.1874
| | 622.1874
| |  
| |63/44
| |  
| |  
|-
|-
| | 40
| | 40
| | 638.1409
| | 638.1409
| |  
| |81/56
| |  
| |  
|-
|-
Line 220: Line 255:
|-
|-
| | 42
| | 42
| | 670.0480
| | 670.048
| |  
| |  
| |  
| |  
Line 226: Line 261:
| | 43
| | 43
| | 686.0015
| | 686.0015
| |  
| |40/27
| |  
| |  
|-
|-
| | 44
| | 44
| | 701.9550
| | 701.955
| | '''exact [[3/2]]'''
| | '''exact [[3/2]]'''
| | just perfect fifth
| | just perfect fifth
|-
|45
|717.8985
|243/160
|
|-
|46
|733.862
|
|
|-
|47
|749.8156
|
|
|-
|48
|765.7691
|14/9
|
|-
|49
|781.7226
|11/7
|
|-
|50
|797.6761
|
|
|-
|51
|813.6297
|8/5
|
|-
|52
|829.5832
|
|
|-
|53
|845.5367
|
|
|-
|54
|861.4902
|
|
|-
|55
|877.44375
|5/3
|
|-
|56
|893.3973
|
|
|-
|57
|909.3508
|27/16
|
|-
|58
|925.3043
|
|
|-
|59
|941.2578
|
|
|-
|60
|957.2184
|153/88
|
|-
|61
|973.1649
|7/4
|
|-
|62
|989.1184
|99/56
|
|-
|63
|1005.0719
|243/136
|
|-
|64
|1021.0255
|9/5
|
|-
|65
|1036.979
|
|
|-
|66
|1052.9325
|
|
|-
|67
|1068.886
|13/7
|
|-
|68
|1084.89355
|15/8
|
|-
|69
|1100.7931
|
|
|-
|70
|1116.7466
|
|
|-
|71
|1132.7001
|
|
|-
|72
|1148.6536
|
|
|-
|73
|1164.9072
|
|
|-
|74
|1180.5607
|160/81
|
|-
|75
|1196.5142
|2/1
|
|-
|76
|1212.4677
|
|
|-
|77
|1228.42125
|
|
|-
|78
|1244.3748
|
|
|-
|79
|1260.3283
|
|
|-
|80
|1276.2818
|
|
|-
|81
|1292.2353
|
|
|-
|82
|1308.1889
|
|
|-
|83
|1324.1424
|
|
|-
|84
|1340.0959
|
|
|-
|85
|1356.0494
|
|
|-
|86
|1372.003
|
|
|-
|87
|1387.9565
|20/9
|
|-
|88
|1403.91
|'''exact''' 9/4
|
|}
|}
==Related regular temperaments==
===5-limit 677&1053===
Comma: |183 -51 -44>
POTE generator: ~|-104 29 25> = 15.9540
Map: [<1 1 3|, <0 44 -51|]
EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836
===2.3.5.11 677&1053===
Commas: 184549376/184528125, 38084983750656/38060880859375
POTE generator: ~|-104 29 25> = 15.9535
Map: [<1 1 3 1|, <0 44 -51 185|]
EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084
===13-limit 677&1053===
Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000
POTE generator: ~|-104 29 25> = 15.9540
Map: [<1 1 3 1 -3|, <0 44 -51 185 504|]
EDOs: 677, 1053, 1730, 2407, 3084, 4137
[[Category:Edf]]
[[Category:Edonoi]]