User:Moremajorthanmajor/Ed9/4: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
minor edit
Tags: Mobile edit Mobile web edit
BudjarnLambeth (talk | contribs)
m Redirected page to Ed9/4
Tag: New redirect
 
(42 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''EdIX/edn''' means '''Division of a ninth (nonet) interval into n equal parts'''.
#redirect [[Ed9/4]]
 
<font style="font-size: 19.5px;">Division of a ninth (e. g. 9/4) into n equal parts</font>
 
Division of e. g. the 9:4 into equal parts can be conceived of as to directly use this interval as an equivalence, or not. The question of [[equivalence]] has not even been posed yet. The utility of 9:4 or another ninth as a base though, is apparent by being the standard replacement for the root in jazz piano voicings. Also, as a ninth is the double of a fifth, the fifth of normal root position triads will become the common suspension (5-4 or 5-6) of a ninth-based system. However, thirds and sixths are no longer inverses, and thus an [[Pseudo-traditional_harmonic_functions_of_octatonic_scale_degrees|octatonic scale]] (i. e. any of those of the proper Napoli temperament family which are generated by fourth optionally with a period equivalent to three or six macrotones, in particular ones at least as wide as 4 degrees of [[45edo]]) takes 1-3-6 as the root position of its regular triad. Many, though not all, of these scales have a pseudo (false) octave, with various degrees of accuracy.
 
Incidentally, one way to treat 9/4 as an equivalence is the use of the 4:5:6:7:[8]:(9) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in meantone. Whereas in meantone it takes four 3/2 to get to 5/1, here it takes nine 5/4 to get to the same place as thirteen 7/6 (tempering out the comma |5 -13 9 -13&gt;) or three 7/6 to get between 6/5 and the period of 3/2 (tempering out the comma 1728/1715). So, doing this yields 8 or 10, 12 or 14, and 22 note 2MOS. While the notes are rather farther apart, the scheme is uncannily similar to certain versions of the regularly tempered approximate ("full"-status) [[A_shruti_list|shrutis]]. "Macroshrutis" might be a practically perfect term for it if it hasn't been named yet.
 
The branches of the Napoli family are named thus:
 
Bipentachordal:
 
* 4&amp;4: Macrodiminshed
* 6&amp;2: Macroshrutis
* 5&amp;3: Grandfather
 
The temperament family in the Neapolitan temperament area which has an interlaced enneatonic scale is named Fujiyama (i. e. the volcano viewable from practically anywhere in Japan due to the Japanese archipelago consisting of such flat islands).
 
Surprisingly, though sort of obviously, the golden and pyrite tunings of edIXs must be forced to turn out to divide a (nearly) pure 9:4 (in particular, using Aeolian mode gives the [[2/7-comma meantone]] major ninth as almost exactly the pyrite tuning of the period, or (8φ+6)/(7φ+5)).
 
==Individual pages for EDIXs==
* [[8edIX]]
* [[9edIX]]
* [[13edIX]]
* [[14edIX]]
* [[17edIX]]
 
[[Category:EdIX| ]] <!-- main article -->
[[Category:Ed9/4]]
[[Category:Equal-step tuning]]

Latest revision as of 03:23, 22 May 2025

Redirect to: