User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(22 intermediate revisions by the same user not shown)
Line 3: Line 3:
[[User:BudjarnLambeth/Draft related tunings section]]
[[User:BudjarnLambeth/Draft related tunings section]]


= Title1 ==
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
What follows is a comparison of stretched- and compressed-octave 42edo tunings.
38edo's approximation of [[JI]] can be improved by slightly [[octave stretch|stretching the octave]].


; [[ed6|108ed6]]
What follows is a comparison of stretched-octave 38edo tunings.
* Step size: NNN{{c}}, octave size: 1206.3{{c}}
Stretching the octave of 42edo by around 6{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 108ed6 does this. So does the tuning [[97ed5]] whose octave differs by only 0.1{{c}}.
{{Harmonics in equal|108|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 108ed6}}
{{Harmonics in equal|108|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 108ed6 (continued)}}


; [[zpi|189zpi]]
; 38edo
* Step size: 28.689{{c}}, octave size: 1204.9{{c}}
* Step size: 31.579{{c}}, octave size: 1200.00{{c}}  
Stretching the octave of 42edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 189zpi does this.
Pure-octaves 38edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in cet|28.689|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 189zpi}}
{{Harmonics in equal|38|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38edo}}
{{Harmonics in cet|28.689|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 189zpi (continued)}}
{{Harmonics in equal|38|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38edo (continued)}}


; [[ed12|150ed12]]  
; [[WE|38et, 13-limit WE tuning]]  
* Step size: NNN{{c}}, octave size: 1204.5{{c}}
* Step size: 31.599{{c}}, octave size: 1200.77{{c}}
Stretcing the octave of 42edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 150ed12 does this.
Stretching the octave of 38edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in equal|150|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed12}}
{{Harmonics in cet|31.599|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning}}
{{Harmonics in equal|150|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed12 (continued)}}
{{Harmonics in cet|31.599|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning (continued)}}


; [[equal tuning|145ed11]]  
; [[ed5|88ed5]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 31.663{{c}}, octave size: 1203.18{{c}}
Stretching the octave of 42edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 145ed11 does this.
Stretching the octave of 38edo by around 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 88ed5 does this.
{{Harmonics in equal|145|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 145ed11}}
{{Harmonics in equal|88|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 88ed5}}
{{Harmonics in equal|145|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 145ed11 (continued)}}
{{Harmonics in equal|88|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 88ed5 (continued)}}


; 42edo
; [[zpi|166zpi]]
* Step size: NNN{{c}}, octave size: 1200.0{{c}}  
* Step size: 31.671{{c}}, octave size: 1203.48{{c}}
Pure-octaves 42edo approximates all harmonics up to 16 within NNN{{c}}. The tuning [[zpi|190zpi]] is almost exactly the same as pure-octaves 42edo, its octave differing by less than 0.05{{c}}.
Stretching the octave of 38edo by around 3.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 166zpi does this.
{{Harmonics in equal|42|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42edo}}
{{Harmonics in cet|31.671|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 166zpi}}
{{Harmonics in equal|42|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42edo (continued)}}
{{Harmonics in cet|31.671|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 166zpi (continued)}}


; [[ed7|118ed7]]  
; [[60edt]]  
* Step size: NNN{{c}}, octave size: 1199.1{{c}}
* Step size: 31.699{{c}}, octave size: 1204.57{{c}}
Compressing the octave of 42edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 118ed7 does this.
Stretching the octave of 38edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60edt does this.
{{Harmonics in equal|118|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 118ed7}}
{{Harmonics in equal|60|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60edt}}
{{Harmonics in equal|118|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 118ed7 (continued)}}
{{Harmonics in equal|60|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60edt (continued)}}
 
; [[WE|42et, 13-limit WE tuning]]
* Step size: 28.534{{c}}, octave size: 1198.4{{c}}
Compressing the octave of 42edo by around 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in cet|28.534|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning}}
{{Harmonics in cet|28.534|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning (continued)}}
 
; [[ed12|151ed12]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
Compressing the octave of 42edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. So do the 7-limit [[WE]] and [[TE]] tunings of 42et, whose octaves are within 0.3{{c}} of 151ed12.
{{Harmonics in equal|151|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 151ed12}}
{{Harmonics in equal|151|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 151ed12 (continued)}}
 
; [[ed6|109ed6]]
* Step size: NNN{{c}}, octave size: 1195.2{{c}}
Compressing the octave of 42edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 109ed6 does this.
{{Harmonics in equal|109|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 109ed6}}
{{Harmonics in equal|109|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 109ed6 (continued)}}
 
; [[zpi|191zpi]]
* Step size: 28.444{{c}}, octave size: 1194.6{{c}}
Compressing the octave of 42edo by around 5.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 191zpi does this.
{{Harmonics in cet|28.444|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 191zpi}}
{{Harmonics in cet|28.444|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 191zpi (continued)}}
 
; [[67edt]]
* Step size: NNN{{c}}, octave size: 1192.3{{c}}
Compressing the octave of 42edo by around 7.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 67edt does this.
{{Harmonics in equal|67|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 67edt}}
{{Harmonics in equal|67|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 67edt (continued)}}


= Title2 =
= Title2 =
Line 93: Line 59:
; High-priority
; High-priority


42edo (reduce # of edonoi)
118edo (choose ZPIS)
* 108ed6 (octave is identical to 97ed5 within 0.1{{c}})
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 189zpi (28.689c)
* 187edt
* 150ed12
* 69edf
* 145ed11
* 13-limit WE (10.171c)
''190zpi's octave is within 0.05{{c}} of pure-octaves 42edo''
* Best nearby ZPI(s)
* 118ed7
* 13-limit WE (28.534c)
* 151ed12 (octave is identical to 7-limit WE within 0.3{{c}})
* 109ed6
* 191zpi (28.444c)
* 67edt


54edo
103edo (narrow down edonoi, choose ZPIS)
* 139ed6 (octave is identical to 262zpi within 0.2{{c}})
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
* 151ed7
* 163edt
* 193ed12
* 239ed5
* 263zpi (22.243c)
* 266ed6
* 13-limit WE (22.198c)  (octave is identical to 187ed11 within 0.1{{c}})
* 289ed7
* 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}})
* 356ed11
* 152ed7
* 369ed12
* 140ed6
* 381ed13
* 126ed5 (octave is identical to 86edt within 0.1{{c}})
* 421ed17
* 466ed23
* 13-limit WE (11.658c)
* Best nearby ZPI(s)


64edo
111edo (choose ZPIS)
* 179ed7 (octave is identical to 326zpi within 0.3{{c}})
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* 165ed6
* Nearby edt, ed6, ed12 and/or edf
* 229ed12 (octave is identical to 221ed11 within 0.1{{c}})
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 327zpi (18.767c)
* 1-2 WE tunings
* 11-limit WE (18.755c)
* Best nearby ZPI(s)
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}''
* 328zpi (18.721c)
* 180ed7
* 230ed12
* 149ed5


59edo (reduce # of edonoi or zpi)
13edo
* 152ed6
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* 294zpi (20.399c)
* Main: "13edo and optimal octave stretching"
* 211ed12
* 2.5.11.13 WE (92.483c)
* 295zpi (20.342c)
* 2.5.7.13 WE (92.804c)
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}''
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 13-limit WE (20.320c)
* 38zpi (92.531c)
* 7-limit WE (20.301c)
 
* 166ed7
104edo
* 212ed12
* Nearby edt, ed6, ed12 and/or edf
* 296zpi (20.282c)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 153ed6
* 1-2 WE tunings
* Best nearby ZPI(s)


; Medium priority
; Medium-priority


25edo
25edo
Line 167: Line 126:
30edo
30edo
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
34edo
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 200: Line 152:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


9edo
15edo
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 207: Line 159:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


10edo
9edo
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 214: Line 166:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


11edo
18edo
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 221: Line 173:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


15edo
24edo
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
 
18edo
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(


48edo
48edo
Line 254: Line 199:
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)s)


20edo
10edo
{{harmonics in equal | 20 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 263: Line 208:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


24edo
11edo
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 270: Line 215:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


28edo
34edo
{{harmonics in equal | 28 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
 
13edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)
 
118edo (choose ZPIS)
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 187edt
* 69edf
* 13-limit WE (10.171c)
* Best nearby ZPI(s)
 
103edo (narrow down edonoi, choose ZPIS)
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
* 163edt
* 239ed5
* 266ed6
* 289ed7
* 356ed11
* 369ed12
* 381ed13
* 421ed17
* 466ed23
* 13-limit WE (11.658c)
* Best nearby ZPI(s)
 
111edo (choose ZPIS)
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 314: Line 223:


; Low priority
; Low priority
104edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)


125edo
125edo

Latest revision as of 02:39, 3 September 2025

Quick link

User:BudjarnLambeth/Draft related tunings section

Title1

Octave stretch or compression

38edo's approximation of JI can be improved by slightly stretching the octave.

What follows is a comparison of stretched-octave 38edo tunings.

38edo
  • Step size: 31.579 ¢, octave size: 1200.00 ¢

Pure-octaves 38edo approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in 38edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -7.2 +0.0 -7.4 -7.2 +10.1 +0.0 -14.4 -7.4 -14.5 -7.2
Relative (%) +0.0 -22.9 +0.0 -23.3 -22.9 +32.1 +0.0 -45.7 -23.3 -45.8 -22.9
Steps
(reduced)
38
(0)
60
(22)
76
(0)
88
(12)
98
(22)
107
(31)
114
(0)
120
(6)
126
(12)
131
(17)
136
(22)
Approximation of harmonics in 38edo (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +12.1 +10.1 -14.6 +0.0 -10.2 -14.4 -13.3 -7.4 +2.9 -14.5 +3.3 -7.2
Relative (%) +38.3 +32.1 -46.2 +0.0 -32.4 -45.7 -42.1 -23.3 +9.2 -45.8 +10.5 -22.9
Steps
(reduced)
141
(27)
145
(31)
148
(34)
152
(0)
155
(3)
158
(6)
161
(9)
164
(12)
167
(15)
169
(17)
172
(20)
174
(22)
38et, 13-limit WE tuning
  • Step size: 31.599 ¢, octave size: 1200.77 ¢

Stretching the octave of 38edo by around 1 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.

Approximation of harmonics in 38et, 13-limit WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.8 -6.0 +1.5 -5.6 -5.3 +12.3 +2.3 -12.0 -4.8 -11.8 -4.5
Relative (%) +2.4 -19.0 +4.8 -17.7 -16.6 +38.8 +7.2 -38.1 -15.3 -37.5 -14.2
Step 38 60 76 88 98 107 114 120 126 131 136
Approximation of harmonics in 38et, 13-limit WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +14.9 +13.0 -11.6 +3.0 -7.1 -11.3 -10.1 -4.1 +6.3 -11.1 +6.8 -3.7
Relative (%) +47.3 +41.2 -36.8 +9.6 -22.5 -35.7 -31.9 -12.9 +19.8 -35.1 +21.4 -11.8
Step 141 145 148 152 155 158 161 164 167 169 172 174
88ed5
  • Step size: 31.663 ¢, octave size: 1203.18 ¢

Stretching the octave of 38edo by around 3 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 88ed5 does this.

Approximation of harmonics in 88ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.2 -2.2 +6.4 +0.0 +1.0 -12.6 +9.5 -4.4 +3.2 -3.5 +4.2
Relative (%) +10.0 -6.9 +20.1 +0.0 +3.1 -39.7 +30.1 -13.9 +10.0 -11.1 +13.2
Steps
(reduced)
38
(38)
60
(60)
76
(76)
88
(0)
98
(10)
106
(18)
114
(26)
120
(32)
126
(38)
131
(43)
136
(48)
Approximation of harmonics in 88ed5 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -7.8 -9.4 -2.2 +12.7 +2.8 -1.2 +0.2 +6.4 -14.8 -0.3 -14.0 +7.3
Relative (%) -24.5 -29.7 -6.9 +40.2 +8.7 -3.8 +0.6 +20.1 -46.7 -1.0 -44.1 +23.2
Steps
(reduced)
140
(52)
144
(56)
148
(60)
152
(64)
155
(67)
158
(70)
161
(73)
164
(76)
166
(78)
169
(81)
171
(83)
174
(86)
166zpi
  • Step size: 31.671 ¢, octave size: 1203.48 ¢

Stretching the octave of 38edo by around 3.5 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 166zpi does this.

Approximation of harmonics in 166zpi
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.5 -1.7 +7.0 +0.7 +1.8 -11.7 +10.5 -3.4 +4.2 -2.4 +5.3
Relative (%) +11.0 -5.4 +22.1 +2.3 +5.7 -36.9 +33.1 -10.7 +13.4 -7.6 +16.7
Step 38 60 76 88 98 106 114 120 126 131 136
Approximation of harmonics in 166zpi (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -6.6 -8.2 -1.0 +14.0 +4.0 +0.1 +1.5 +7.7 -13.4 +1.1 -12.5 +8.8
Relative (%) -20.8 -25.9 -3.0 +44.2 +12.8 +0.3 +4.8 +24.4 -42.3 +3.4 -39.6 +27.8
Step 140 144 148 152 155 158 161 164 166 169 171 174
60edt
  • Step size: 31.699 ¢, octave size: 1204.57 ¢

Stretching the octave of 38edo by around 4.5 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 60edt does this.

Approximation of harmonics in 60edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.6 +0.0 +9.1 +3.2 +4.6 -8.7 +13.7 +0.0 +7.8 +1.3 +9.1
Relative (%) +14.4 +0.0 +28.8 +10.2 +14.4 -27.5 +43.3 +0.0 +24.6 +4.0 +28.8
Steps
(reduced)
38
(38)
60
(0)
76
(16)
88
(28)
98
(38)
106
(46)
114
(54)
120
(0)
126
(6)
131
(11)
136
(16)
Approximation of harmonics in 60edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -2.6 -4.1 +3.2 -13.4 +8.4 +4.6 +6.1 +12.4 -8.7 +5.9 -7.7 +13.7
Relative (%) -8.3 -13.0 +10.2 -42.3 +26.6 +14.4 +19.1 +39.0 -27.5 +18.5 -24.3 +43.3
Steps
(reduced)
140
(20)
144
(24)
148
(28)
151
(31)
155
(35)
158
(38)
161
(41)
164
(44)
166
(46)
169
(49)
171
(51)
174
(54)

Title2

Lab

Place holder








Approximation of prime harmonics in 1ed300c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0 -102 -86 -69 +49 +59 -105 +2 -28 -130 +55
Relative (%) +0.0 -34.0 -28.8 -22.9 +16.2 +19.8 -35.0 +0.8 -9.4 -43.2 +18.3
Step 4 6 9 11 14 15 16 17 18 19 20


Approximation of prime harmonics in 140ed12
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.6 +3.2 +10.0 +11.3 -3.0 +15.1 +11.6 +3.4 +10.6 +8.8 -14.5
Relative (%) -5.2 +10.4 +32.4 +36.7 -9.8 +49.0 +37.6 +11.0 +34.6 +28.6 -47.1
Steps
(reduced)
39
(39)
62
(62)
91
(91)
110
(110)
135
(135)
145
(5)
160
(20)
166
(26)
177
(37)
190
(50)
193
(53)

Possible tunings to be used on each page

You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.

(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)

High-priority

118edo (choose ZPIS)

Approximation of harmonics in 118edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -0.26 +0.00 +0.13 -0.26 -2.72 +0.00 -0.52 +0.13 -2.17 -0.26 +3.54
Relative (%) +0.0 -2.6 +0.0 +1.2 -2.6 -26.8 +0.0 -5.1 +1.2 -21.3 -2.6 +34.8
Steps
(reduced)
118
(0)
187
(69)
236
(0)
274
(38)
305
(69)
331
(95)
354
(0)
374
(20)
392
(38)
408
(54)
423
(69)
437
(83)
  • 187edt
  • 69edf
  • 13-limit WE (10.171c)
  • Best nearby ZPI(s)

103edo (narrow down edonoi, choose ZPIS)

Approximation of harmonics in 103edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -2.93 +0.00 -1.85 -2.93 -1.84 +0.00 +5.80 -1.85 -3.75 -2.93 -1.69
Relative (%) +0.0 -25.1 +0.0 -15.9 -25.1 -15.8 +0.0 +49.8 -15.9 -32.1 -25.1 -14.5
Steps
(reduced)
103
(0)
163
(60)
206
(0)
239
(33)
266
(60)
289
(83)
309
(0)
327
(18)
342
(33)
356
(47)
369
(60)
381
(72)
  • 163edt
  • 239ed5
  • 266ed6
  • 289ed7
  • 356ed11
  • 369ed12
  • 381ed13
  • 421ed17
  • 466ed23
  • 13-limit WE (11.658c)
  • Best nearby ZPI(s)

111edo (choose ZPIS)

Approximation of harmonics in 111edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 +0.75 +0.00 +2.88 +0.75 +4.15 +0.00 +1.50 +2.88 +0.03 +0.75 +2.72
Relative (%) +0.0 +6.9 +0.0 +26.6 +6.9 +38.4 +0.0 +13.8 +26.6 +0.3 +6.9 +25.1
Steps
(reduced)
111
(0)
176
(65)
222
(0)
258
(36)
287
(65)
312
(90)
333
(0)
352
(19)
369
(36)
384
(51)
398
(65)
411
(78)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

13edo

Approximation of harmonics in 13edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +36.5 +0.0 -17.1 +36.5 -45.7 +0.0 -19.3 -17.1 +2.5 +36.5 -9.8
Relative (%) +0.0 +39.5 +0.0 -18.5 +39.5 -49.6 +0.0 -20.9 -18.5 +2.7 +39.5 -10.6
Steps
(reduced)
13
(0)
21
(8)
26
(0)
30
(4)
34
(8)
36
(10)
39
(0)
41
(2)
43
(4)
45
(6)
47
(8)
48
(9)
  • Main: "13edo and optimal octave stretching"
  • 2.5.11.13 WE (92.483c)
  • 2.5.7.13 WE (92.804c)
  • 2.3 WE (91.405c) (good for opposite 7 mapping)
  • 38zpi (92.531c)

104edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Medium-priority

25edo

Approximation of harmonics in 25edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -2.3 +18.0 -8.8 +0.0 -11.9 -2.3 -23.3 +18.0 +23.5
Relative (%) +0.0 +37.6 +0.0 -4.8 +37.6 -18.4 +0.0 -24.8 -4.8 -48.6 +37.6 +48.9
Steps
(reduced)
25
(0)
40
(15)
50
(0)
58
(8)
65
(15)
70
(20)
75
(0)
79
(4)
83
(8)
86
(11)
90
(15)
93
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

26edo

Approximation of harmonics in 26edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -9.6 +0.0 -17.1 -9.6 +0.4 +0.0 -19.3 -17.1 +2.5 -9.6 -9.8
Relative (%) +0.0 -20.9 +0.0 -37.0 -20.9 +0.9 +0.0 -41.8 -37.0 +5.5 -20.9 -21.1
Steps
(reduced)
26
(0)
41
(15)
52
(0)
60
(8)
67
(15)
73
(21)
78
(0)
82
(4)
86
(8)
90
(12)
93
(15)
96
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

29edo

Approximation of harmonics in 29edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +1.5 +0.0 -13.9 +1.5 -17.1 +0.0 +3.0 -13.9 -13.4 +1.5 -12.9
Relative (%) +0.0 +3.6 +0.0 -33.6 +3.6 -41.3 +0.0 +7.2 -33.6 -32.4 +3.6 -31.3
Steps
(reduced)
29
(0)
46
(17)
58
(0)
67
(9)
75
(17)
81
(23)
87
(0)
92
(5)
96
(9)
100
(13)
104
(17)
107
(20)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

30edo

Approximation of harmonics in 30edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 -3.9 +13.7 +8.7 +18.0 -0.5
Relative (%) +0.0 +45.1 +0.0 +34.2 +45.1 -22.1 +0.0 -9.8 +34.2 +21.7 +45.1 -1.3
Steps
(reduced)
30
(0)
48
(18)
60
(0)
70
(10)
78
(18)
84
(24)
90
(0)
95
(5)
100
(10)
104
(14)
108
(18)
111
(21)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

35edo

Approximation of harmonics in 35edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -16.2 +0.0 -9.2 -16.2 -8.8 +0.0 +1.8 -9.2 -2.7 -16.2 +16.6
Relative (%) +0.0 -47.4 +0.0 -26.7 -47.4 -25.7 +0.0 +5.3 -26.7 -8.0 -47.4 +48.5
Steps
(reduced)
35
(0)
55
(20)
70
(0)
81
(11)
90
(20)
98
(28)
105
(0)
111
(6)
116
(11)
121
(16)
125
(20)
130
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

36edo

Approximation of harmonics in 36edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -2.2 +0.0 -3.9 +13.7 +15.3 -2.0 -7.2
Relative (%) +0.0 -5.9 +0.0 +41.1 -5.9 -6.5 +0.0 -11.7 +41.1 +46.0 -5.9 -21.6
Steps
(reduced)
36
(0)
57
(21)
72
(0)
84
(12)
93
(21)
101
(29)
108
(0)
114
(6)
120
(12)
125
(17)
129
(21)
133
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

37edo

Approximation of harmonics in 37edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +11.6 +0.0 +2.9 +11.6 +4.1 +0.0 -9.3 +2.9 +0.0 +11.6 +2.7
Relative (%) +0.0 +35.6 +0.0 +8.9 +35.6 +12.8 +0.0 -28.7 +8.9 +0.1 +35.6 +8.4
Steps
(reduced)
37
(0)
59
(22)
74
(0)
86
(12)
96
(22)
104
(30)
111
(0)
117
(6)
123
(12)
128
(17)
133
(22)
137
(26)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

15edo

Approximation of harmonics in 15edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 +36.1 +13.7 +8.7 +18.0 +39.5
Relative (%) +0.0 +22.6 +0.0 +17.1 +22.6 -11.0 +0.0 +45.1 +17.1 +10.9 +22.6 +49.3
Steps
(reduced)
15
(0)
24
(9)
30
(0)
35
(5)
39
(9)
42
(12)
45
(0)
48
(3)
50
(5)
52
(7)
54
(9)
56
(11)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

9edo

Approximation of harmonics in 9edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -35.3 +0.0 +13.7 -35.3 -35.5 +0.0 +62.8 +13.7 -18.0 -35.3 -40.5
Relative (%) +0.0 -26.5 +0.0 +10.3 -26.5 -26.6 +0.0 +47.1 +10.3 -13.5 -26.5 -30.4
Steps
(reduced)
9
(0)
14
(5)
18
(0)
21
(3)
23
(5)
25
(7)
27
(0)
29
(2)
30
(3)
31
(4)
32
(5)
33
(6)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

18edo

Approximation of harmonics in 18edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +31.4 +0.0 +13.7 +31.4 +31.2 +0.0 -3.9 +13.7 -18.0 +31.4 +26.1
Relative (%) +0.0 +47.1 +0.0 +20.5 +47.1 +46.8 +0.0 -5.9 +20.5 -27.0 +47.1 +39.2
Steps
(reduced)
18
(0)
29
(11)
36
(0)
42
(6)
47
(11)
51
(15)
54
(0)
57
(3)
60
(6)
62
(8)
65
(11)
67
(13)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

24edo

Approximation of harmonics in 24edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -18.8 +0.0 -3.9 +13.7 -1.3 -2.0 +9.5
Relative (%) +0.0 -3.9 +0.0 +27.4 -3.9 -37.7 +0.0 -7.8 +27.4 -2.6 -3.9 +18.9
Steps
(reduced)
24
(0)
38
(14)
48
(0)
56
(8)
62
(14)
67
(19)
72
(0)
76
(4)
80
(8)
83
(11)
86
(14)
89
(17)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(

48edo

Approximation of harmonics in 48edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 -11.3 -2.0 +6.2 +0.0 -3.9 -11.3 -1.3 -2.0 +9.5
Relative (%) +0.0 -7.8 +0.0 -45.3 -7.8 +24.7 +0.0 -15.6 -45.3 -5.3 -7.8 +37.9
Steps
(reduced)
48
(0)
76
(28)
96
(0)
111
(15)
124
(28)
135
(39)
144
(0)
152
(8)
159
(15)
166
(22)
172
(28)
178
(34)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

5edo

Approximation of harmonics in 5edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0 +18 +0 +94 +18 -9 +0 +36 +94 -71 +18 +119
Relative (%) +0.0 +7.5 +0.0 +39.0 +7.5 -3.7 +0.0 +15.0 +39.0 -29.7 +7.5 +49.8
Steps
(reduced)
5
(0)
8
(3)
10
(0)
12
(2)
13
(3)
14
(4)
15
(0)
16
(1)
17
(2)
17
(2)
18
(3)
19
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

6edo

Approximation of harmonics in 6edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +98.0 +0.0 +13.7 +98.0 +31.2 +0.0 -3.9 +13.7 +48.7 +98.0 -40.5
Relative (%) +0.0 +49.0 +0.0 +6.8 +49.0 +15.6 +0.0 -2.0 +6.8 +24.3 +49.0 -20.3
Steps
(reduced)
6
(0)
10
(4)
12
(0)
14
(2)
16
(4)
17
(5)
18
(0)
19
(1)
20
(2)
21
(3)
22
(4)
22
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)s)

10edo

Approximation of harmonics in 10edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -26.3 +18.0 -8.8 +0.0 +36.1 -26.3 +48.7 +18.0 -0.5
Relative (%) +0.0 +15.0 +0.0 -21.9 +15.0 -7.4 +0.0 +30.1 -21.9 +40.6 +15.0 -0.4
Steps
(reduced)
10
(0)
16
(6)
20
(0)
23
(3)
26
(6)
28
(8)
30
(0)
32
(2)
33
(3)
35
(5)
36
(6)
37
(7)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

11edo

Approximation of harmonics in 11edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -47.4 +0.0 +50.0 -47.4 +13.0 +0.0 +14.3 +50.0 -5.9 -47.4 +32.2
Relative (%) +0.0 -43.5 +0.0 +45.9 -43.5 +11.9 +0.0 +13.1 +45.9 -5.4 -43.5 +29.5
Steps
(reduced)
11
(0)
17
(6)
22
(0)
26
(4)
28
(6)
31
(9)
33
(0)
35
(2)
37
(4)
38
(5)
39
(6)
41
(8)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

34edo

Approximation of harmonics in 34edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +3.9 +0.0 +1.9 +3.9 -15.9 +0.0 +7.9 +1.9 +13.4 +3.9 +6.5
Relative (%) +0.0 +11.1 +0.0 +5.4 +11.1 -45.0 +0.0 +22.3 +5.4 +37.9 +11.1 +18.5
Steps
(reduced)
34
(0)
54
(20)
68
(0)
79
(11)
88
(20)
95
(27)
102
(0)
108
(6)
113
(11)
118
(16)
122
(20)
126
(24)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Low priority

125edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

145edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

152edo

  • 241edt
  • 13-limit WE (7.894c)
  • Best nearby ZPI(s)

159edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

166edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

182edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

198edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

212edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

243edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

247edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)