User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(62 intermediate revisions by the same user not shown)
Line 5: Line 5:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
What follows is a comparison of stretched- and compressed-octave 60edo tunings.
38edo's approximation of [[JI]] can be improved by slightly [[octave stretch|stretching the octave]].


; [[35edf]]
What follows is a comparison of stretched-octave 38edo tunings.
* Step size: NNN{{c}}, octave size: 1203.35{{c}}
Stretching the octave of 60edo by a little over 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 35edf does this.
{{Harmonics in equal|35|3|2|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 35edf}}
{{Harmonics in equal|35|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 35edf (continued)}}


; [[139ed5]]
; 38edo
* Step size: NNN{{c}}, octave size: 1202.73{{c}}
* Step size: 31.579{{c}}, octave size: 1200.00{{c}}  
Stretching the octave of 60edo by a little under{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 139ed5 does this.
Pure-octaves 38edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|139|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 139ed5}}
{{Harmonics in equal|38|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38edo}}
{{Harmonics in equal|139|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 139ed5 (continued)}}
{{Harmonics in equal|38|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38edo (continued)}}


; [[zpi|301zpi]]  
; [[WE|38et, 13-limit WE tuning]]  
* Step size: 20.027{{c}}, octave size: NNN{{c}}
* Step size: 31.599{{c}}, octave size: 1200.77{{c}}
Stretching the octave of 60edo by around 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 301zpi does this.
Stretching the octave of 38edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in cet|20.027|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 301zpi}}
{{Harmonics in cet|31.599|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning}}
{{Harmonics in cet| 20.027 |intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 301zpi (continued)}}
{{Harmonics in cet|31.599|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning (continued)}}


; [[95edt]]  
; [[ed5|88ed5]]  
* Step size: NNN{{c}}, octave size: 1201.23{{c}}
* Step size: 31.663{{c}}, octave size: 1203.18{{c}}
Stretching the octave of 60edo by just over a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 95edt does this.
Stretching the octave of 38edo by around 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 88ed5 does this.
{{Harmonics in equal|95|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 95edt}}
{{Harmonics in equal|88|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 88ed5}}
{{Harmonics in equal|95|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 95edt (continued)}}
{{Harmonics in equal|88|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 88ed5 (continued)}}


; [[WE|60et, 13-limit WE tuning]] / [[155ed6]]
; [[zpi|166zpi]]  
* Step size: 20.013{{c}}, octave size: 1200.78{{c}}
* Step size: 31.671{{c}}, octave size: 1203.48{{c}}
Stretching the octave of 60edo by just under a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. So does 155ed6 whose octaves differ by only 0.02{{c}}.
Stretching the octave of 38edo by around 3.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 166zpi does this.
{{Harmonics in cet|20.013|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60et, 13-limit WE tuning}}
{{Harmonics in cet|31.671|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 166zpi}}
{{Harmonics in cet|20.013|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60et, 13-limit WE tuning (continued)}}
{{Harmonics in cet|31.671|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 166zpi (continued)}}


; [[215ed12]]  
; [[60edt]]  
* Step size: NNN{{c}}, octave size: 1200.55{{c}}
* Step size: 31.699{{c}}, octave size: 1204.57{{c}}
Stretching the octave of 215ed12 by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 215ed12 does this.
Stretching the octave of 38edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60edt does this.
{{Harmonics in equal|215|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 215ed12}}
{{Harmonics in equal|60|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60edt}}
{{Harmonics in equal|215|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 215ed12 (continued)}}
{{Harmonics in equal|60|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60edt (continued)}}
 
; 60edo
* Step size: 20.000{{c}}, octave size: 1200.00{{c}}
Pure-octaves 60edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|60|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60edo}}
{{Harmonics in equal|60|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60edo (continued)}}
 
; [[zpi|302zpi]]
* Step size: 19.962{{c}}, octave size: 1197.72{{c}}
Compressing the octave of 60edo by around 2{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 202zpi does this.
{{Harmonics in cet|19.962|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 302zpi}}
{{Harmonics in cet|19.962|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 302zpi (continued)}}
 
; [[208ed11]]
* Step size: NNN{{c}}, octave size: 1197.50{{c}}
Compressing the octave of 60edo by around 2.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 208ed11 does this.
{{Harmonics in equal|208|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 208ed11}}
{{Harmonics in equal|208|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 208ed11 (continued)}}
 
; [[zpi|303zpi]]
* Step size: 19.913{{c}}, octave size: 1194.78{{c}}
Compressing the octave of 60edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 303zpi does this.
{{Harmonics in cet|19.913|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 303zpi}}
{{Harmonics in cet|19.913|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 303zpi (continued)}}


= Title2 =
= Title2 =
Line 86: Line 58:


; High-priority
; High-priority
60edo (narrow down edonoi & ZPIs)
* 35edf
* 139ed5
* 301zpi (20.027c)
* 95edt
* 13-limit WE (20.013c) (155ed6 has octaves only 0.02{{c}} different)
* 215ed12
* 302zpi (19.962c)
* 208ed11 (ideal for catnip temperament)
* 303zpi (19.913c)
32edo
* 13-limit WE (37.481c)
* 11-limit WE (37.453c)
* 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4{{c}})
* 51edt
* 134zpi (37.176c)
* 75ed5
33edo
* 76ed5
* 92ed7 (137zpi's octave differs by only 0.3{{c}})
* 52ed13
* 114ed11
* 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}})
* 13-limit WE (36.357c)
* 93ed7 (optimised for dual-fifths)
* 77ed5 (139zpi's octave differs by only 0.2{{c}})
* 123ed13 / 1ed47/46 (identical within <0.1{{c}})
* 115ed11
39edo
* 171zpi (30.973c) (optimised for dual-fifths use)
* 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}})
* 101ed6 (octave of 172zpi differs by only 0.4{{c}})
* 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}})
* 110ed7 (octave of 145ed13 differs by only 0.1{{c}})
* 91ed5
42edo
* 108ed6 (octave is identical to 97ed5 within 0.1{{c}})
* 189zpi (28.689c)
* 150ed12
* 145ed11
''190zpi's octave is within 0.05{{c}} of pure-octaves 42edo''
* 118ed7
* 13-limit WE (28.534c)
* 151ed12 (octave is identical to 7-limit WE within 0.3{{c}})
* 109ed6
* 191zpi (28.444c)
* 67edt
45edo
* 209zpi (26.550)
* 13-limit WE (26.695c)
* 161ed12
* 116ed6 (octave identical to 126ed7 within 0.1{{c}})
* 7-limit WE (26.745c)
* 207zpi (26.762)
* 71edt (octave identical to 155ed11 within 0.3{{c}})
54edo
* 139ed6 (octave is identical to 262zpi within 0.2{{c}})
* 151ed7
* 193ed12
* 263zpi (22.243c)
* 13-limit WE (22.198c)  (octave is identical to 187ed11 within 0.1{{c}})
* 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}})
* 152ed7
* 140ed6
* 126ed5 (octave is identical to 86edt within 0.1{{c}})
59edo
* 152ed6
* 294zpi (20.399c)
* 211ed12
* 295zpi (20.342c)
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}''
* 13-limit WE (20.320c)
* 7-limit WE (20.301c)
* 166ed7
* 212ed12
* 296zpi (20.282c)
* 153ed6
64edo
* 179ed7 (octave is identical to 326zpi within 0.3{{c}})
* 165ed6
* 229ed12 (octave is identical to 221ed11 within 0.1{{c}})
* 327zpi (18.767c)
* 11-limit WE (18.755c)
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}''
* 328zpi (18.721c)
* 180ed7
* 230ed12
* 149ed5
; Medium priority


118edo (choose ZPIS)
118edo (choose ZPIS)
Line 192: Line 65:
* 13-limit WE (10.171c)
* 13-limit WE (10.171c)
* Best nearby ZPI(s)
* Best nearby ZPI(s)
13edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)


103edo (narrow down edonoi, choose ZPIS)
103edo (narrow down edonoi, choose ZPIS)
Line 222: Line 87:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


; Low priority
13edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)


104edo
104edo
Line 230: Line 101:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


125edo
; Medium-priority
 
25edo
{{harmonics in equal | 25 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 236: Line 110:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


145edo
26edo
{{harmonics in equal | 26 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 242: Line 117:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


152edo
29edo
* 241edt
{{harmonics in equal | 29 | 2 | 1 | intervals=integer | columns=12}}
* 13-limit WE (7.894c)
* Best nearby ZPI(s)
 
159edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 253: Line 124:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


166edo
30edo
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 259: Line 131:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


182edo
35edo
{{harmonics in equal | 35 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 265: Line 138:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


198edo
36edo
{{harmonics in equal | 36 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 271: Line 145:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


212edo
37edo
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 277: Line 152:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


243edo
15edo
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 283: Line 159:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


247edo
9edo
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 289: Line 166:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


; Optional
18edo
 
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
25edo
{{harmonics in equal | 25 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 298: Line 173:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


26edo
24edo
{{harmonics in equal | 26 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(


29edo
48edo
{{harmonics in equal | 29 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 312: Line 187:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


30edo
5edo
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 319: Line 194:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


34edo
6edo
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)s)


35edo
10edo
{{harmonics in equal | 35 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 333: Line 208:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


36edo
11edo
{{harmonics in equal | 36 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 340: Line 215:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


37edo
34edo
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 347: Line 222:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


9edo
; Low priority
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)


10edo
125edo
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 361: Line 230:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


11edo
145edo
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 368: Line 236:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


15edo
152edo
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
* 241edt
* Nearby edt, ed6, ed12 and/or edf
* 13-limit WE (7.894c)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)


18edo
159edo
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 382: Line 247:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


48edo
166edo
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 389: Line 253:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


5edo
182edo
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 396: Line 259:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


6edo
198edo
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 403: Line 265:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


20edo
212edo
{{harmonics in equal | 20 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 410: Line 271:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


24edo
243edo
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 417: Line 277:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


28edo
247edo
{{harmonics in equal | 28 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)

Latest revision as of 02:39, 3 September 2025

Quick link

User:BudjarnLambeth/Draft related tunings section

Title1

Octave stretch or compression

38edo's approximation of JI can be improved by slightly stretching the octave.

What follows is a comparison of stretched-octave 38edo tunings.

38edo
  • Step size: 31.579 ¢, octave size: 1200.00 ¢

Pure-octaves 38edo approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in 38edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -7.2 +0.0 -7.4 -7.2 +10.1 +0.0 -14.4 -7.4 -14.5 -7.2
Relative (%) +0.0 -22.9 +0.0 -23.3 -22.9 +32.1 +0.0 -45.7 -23.3 -45.8 -22.9
Steps
(reduced)
38
(0)
60
(22)
76
(0)
88
(12)
98
(22)
107
(31)
114
(0)
120
(6)
126
(12)
131
(17)
136
(22)
Approximation of harmonics in 38edo (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +12.1 +10.1 -14.6 +0.0 -10.2 -14.4 -13.3 -7.4 +2.9 -14.5 +3.3 -7.2
Relative (%) +38.3 +32.1 -46.2 +0.0 -32.4 -45.7 -42.1 -23.3 +9.2 -45.8 +10.5 -22.9
Steps
(reduced)
141
(27)
145
(31)
148
(34)
152
(0)
155
(3)
158
(6)
161
(9)
164
(12)
167
(15)
169
(17)
172
(20)
174
(22)
38et, 13-limit WE tuning
  • Step size: 31.599 ¢, octave size: 1200.77 ¢

Stretching the octave of 38edo by around 1 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.

Approximation of harmonics in 38et, 13-limit WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.8 -6.0 +1.5 -5.6 -5.3 +12.3 +2.3 -12.0 -4.8 -11.8 -4.5
Relative (%) +2.4 -19.0 +4.8 -17.7 -16.6 +38.8 +7.2 -38.1 -15.3 -37.5 -14.2
Step 38 60 76 88 98 107 114 120 126 131 136
Approximation of harmonics in 38et, 13-limit WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +14.9 +13.0 -11.6 +3.0 -7.1 -11.3 -10.1 -4.1 +6.3 -11.1 +6.8 -3.7
Relative (%) +47.3 +41.2 -36.8 +9.6 -22.5 -35.7 -31.9 -12.9 +19.8 -35.1 +21.4 -11.8
Step 141 145 148 152 155 158 161 164 167 169 172 174
88ed5
  • Step size: 31.663 ¢, octave size: 1203.18 ¢

Stretching the octave of 38edo by around 3 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 88ed5 does this.

Approximation of harmonics in 88ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.2 -2.2 +6.4 +0.0 +1.0 -12.6 +9.5 -4.4 +3.2 -3.5 +4.2
Relative (%) +10.0 -6.9 +20.1 +0.0 +3.1 -39.7 +30.1 -13.9 +10.0 -11.1 +13.2
Steps
(reduced)
38
(38)
60
(60)
76
(76)
88
(0)
98
(10)
106
(18)
114
(26)
120
(32)
126
(38)
131
(43)
136
(48)
Approximation of harmonics in 88ed5 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -7.8 -9.4 -2.2 +12.7 +2.8 -1.2 +0.2 +6.4 -14.8 -0.3 -14.0 +7.3
Relative (%) -24.5 -29.7 -6.9 +40.2 +8.7 -3.8 +0.6 +20.1 -46.7 -1.0 -44.1 +23.2
Steps
(reduced)
140
(52)
144
(56)
148
(60)
152
(64)
155
(67)
158
(70)
161
(73)
164
(76)
166
(78)
169
(81)
171
(83)
174
(86)
166zpi
  • Step size: 31.671 ¢, octave size: 1203.48 ¢

Stretching the octave of 38edo by around 3.5 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 166zpi does this.

Approximation of harmonics in 166zpi
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.5 -1.7 +7.0 +0.7 +1.8 -11.7 +10.5 -3.4 +4.2 -2.4 +5.3
Relative (%) +11.0 -5.4 +22.1 +2.3 +5.7 -36.9 +33.1 -10.7 +13.4 -7.6 +16.7
Step 38 60 76 88 98 106 114 120 126 131 136
Approximation of harmonics in 166zpi (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -6.6 -8.2 -1.0 +14.0 +4.0 +0.1 +1.5 +7.7 -13.4 +1.1 -12.5 +8.8
Relative (%) -20.8 -25.9 -3.0 +44.2 +12.8 +0.3 +4.8 +24.4 -42.3 +3.4 -39.6 +27.8
Step 140 144 148 152 155 158 161 164 166 169 171 174
60edt
  • Step size: 31.699 ¢, octave size: 1204.57 ¢

Stretching the octave of 38edo by around 4.5 ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 60edt does this.

Approximation of harmonics in 60edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.6 +0.0 +9.1 +3.2 +4.6 -8.7 +13.7 +0.0 +7.8 +1.3 +9.1
Relative (%) +14.4 +0.0 +28.8 +10.2 +14.4 -27.5 +43.3 +0.0 +24.6 +4.0 +28.8
Steps
(reduced)
38
(38)
60
(0)
76
(16)
88
(28)
98
(38)
106
(46)
114
(54)
120
(0)
126
(6)
131
(11)
136
(16)
Approximation of harmonics in 60edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -2.6 -4.1 +3.2 -13.4 +8.4 +4.6 +6.1 +12.4 -8.7 +5.9 -7.7 +13.7
Relative (%) -8.3 -13.0 +10.2 -42.3 +26.6 +14.4 +19.1 +39.0 -27.5 +18.5 -24.3 +43.3
Steps
(reduced)
140
(20)
144
(24)
148
(28)
151
(31)
155
(35)
158
(38)
161
(41)
164
(44)
166
(46)
169
(49)
171
(51)
174
(54)

Title2

Lab

Place holder








Approximation of prime harmonics in 1ed300c
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0 -102 -86 -69 +49 +59 -105 +2 -28 -130 +55
Relative (%) +0.0 -34.0 -28.8 -22.9 +16.2 +19.8 -35.0 +0.8 -9.4 -43.2 +18.3
Step 4 6 9 11 14 15 16 17 18 19 20


Approximation of prime harmonics in 140ed12
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -1.6 +3.2 +10.0 +11.3 -3.0 +15.1 +11.6 +3.4 +10.6 +8.8 -14.5
Relative (%) -5.2 +10.4 +32.4 +36.7 -9.8 +49.0 +37.6 +11.0 +34.6 +28.6 -47.1
Steps
(reduced)
39
(39)
62
(62)
91
(91)
110
(110)
135
(135)
145
(5)
160
(20)
166
(26)
177
(37)
190
(50)
193
(53)

Possible tunings to be used on each page

You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.

(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)

High-priority

118edo (choose ZPIS)

Approximation of harmonics in 118edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -0.26 +0.00 +0.13 -0.26 -2.72 +0.00 -0.52 +0.13 -2.17 -0.26 +3.54
Relative (%) +0.0 -2.6 +0.0 +1.2 -2.6 -26.8 +0.0 -5.1 +1.2 -21.3 -2.6 +34.8
Steps
(reduced)
118
(0)
187
(69)
236
(0)
274
(38)
305
(69)
331
(95)
354
(0)
374
(20)
392
(38)
408
(54)
423
(69)
437
(83)
  • 187edt
  • 69edf
  • 13-limit WE (10.171c)
  • Best nearby ZPI(s)

103edo (narrow down edonoi, choose ZPIS)

Approximation of harmonics in 103edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 -2.93 +0.00 -1.85 -2.93 -1.84 +0.00 +5.80 -1.85 -3.75 -2.93 -1.69
Relative (%) +0.0 -25.1 +0.0 -15.9 -25.1 -15.8 +0.0 +49.8 -15.9 -32.1 -25.1 -14.5
Steps
(reduced)
103
(0)
163
(60)
206
(0)
239
(33)
266
(60)
289
(83)
309
(0)
327
(18)
342
(33)
356
(47)
369
(60)
381
(72)
  • 163edt
  • 239ed5
  • 266ed6
  • 289ed7
  • 356ed11
  • 369ed12
  • 381ed13
  • 421ed17
  • 466ed23
  • 13-limit WE (11.658c)
  • Best nearby ZPI(s)

111edo (choose ZPIS)

Approximation of harmonics in 111edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.00 +0.75 +0.00 +2.88 +0.75 +4.15 +0.00 +1.50 +2.88 +0.03 +0.75 +2.72
Relative (%) +0.0 +6.9 +0.0 +26.6 +6.9 +38.4 +0.0 +13.8 +26.6 +0.3 +6.9 +25.1
Steps
(reduced)
111
(0)
176
(65)
222
(0)
258
(36)
287
(65)
312
(90)
333
(0)
352
(19)
369
(36)
384
(51)
398
(65)
411
(78)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

13edo

Approximation of harmonics in 13edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +36.5 +0.0 -17.1 +36.5 -45.7 +0.0 -19.3 -17.1 +2.5 +36.5 -9.8
Relative (%) +0.0 +39.5 +0.0 -18.5 +39.5 -49.6 +0.0 -20.9 -18.5 +2.7 +39.5 -10.6
Steps
(reduced)
13
(0)
21
(8)
26
(0)
30
(4)
34
(8)
36
(10)
39
(0)
41
(2)
43
(4)
45
(6)
47
(8)
48
(9)
  • Main: "13edo and optimal octave stretching"
  • 2.5.11.13 WE (92.483c)
  • 2.5.7.13 WE (92.804c)
  • 2.3 WE (91.405c) (good for opposite 7 mapping)
  • 38zpi (92.531c)

104edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Medium-priority

25edo

Approximation of harmonics in 25edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -2.3 +18.0 -8.8 +0.0 -11.9 -2.3 -23.3 +18.0 +23.5
Relative (%) +0.0 +37.6 +0.0 -4.8 +37.6 -18.4 +0.0 -24.8 -4.8 -48.6 +37.6 +48.9
Steps
(reduced)
25
(0)
40
(15)
50
(0)
58
(8)
65
(15)
70
(20)
75
(0)
79
(4)
83
(8)
86
(11)
90
(15)
93
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

26edo

Approximation of harmonics in 26edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -9.6 +0.0 -17.1 -9.6 +0.4 +0.0 -19.3 -17.1 +2.5 -9.6 -9.8
Relative (%) +0.0 -20.9 +0.0 -37.0 -20.9 +0.9 +0.0 -41.8 -37.0 +5.5 -20.9 -21.1
Steps
(reduced)
26
(0)
41
(15)
52
(0)
60
(8)
67
(15)
73
(21)
78
(0)
82
(4)
86
(8)
90
(12)
93
(15)
96
(18)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

29edo

Approximation of harmonics in 29edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +1.5 +0.0 -13.9 +1.5 -17.1 +0.0 +3.0 -13.9 -13.4 +1.5 -12.9
Relative (%) +0.0 +3.6 +0.0 -33.6 +3.6 -41.3 +0.0 +7.2 -33.6 -32.4 +3.6 -31.3
Steps
(reduced)
29
(0)
46
(17)
58
(0)
67
(9)
75
(17)
81
(23)
87
(0)
92
(5)
96
(9)
100
(13)
104
(17)
107
(20)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

30edo

Approximation of harmonics in 30edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 -3.9 +13.7 +8.7 +18.0 -0.5
Relative (%) +0.0 +45.1 +0.0 +34.2 +45.1 -22.1 +0.0 -9.8 +34.2 +21.7 +45.1 -1.3
Steps
(reduced)
30
(0)
48
(18)
60
(0)
70
(10)
78
(18)
84
(24)
90
(0)
95
(5)
100
(10)
104
(14)
108
(18)
111
(21)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

35edo

Approximation of harmonics in 35edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -16.2 +0.0 -9.2 -16.2 -8.8 +0.0 +1.8 -9.2 -2.7 -16.2 +16.6
Relative (%) +0.0 -47.4 +0.0 -26.7 -47.4 -25.7 +0.0 +5.3 -26.7 -8.0 -47.4 +48.5
Steps
(reduced)
35
(0)
55
(20)
70
(0)
81
(11)
90
(20)
98
(28)
105
(0)
111
(6)
116
(11)
121
(16)
125
(20)
130
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

36edo

Approximation of harmonics in 36edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -2.2 +0.0 -3.9 +13.7 +15.3 -2.0 -7.2
Relative (%) +0.0 -5.9 +0.0 +41.1 -5.9 -6.5 +0.0 -11.7 +41.1 +46.0 -5.9 -21.6
Steps
(reduced)
36
(0)
57
(21)
72
(0)
84
(12)
93
(21)
101
(29)
108
(0)
114
(6)
120
(12)
125
(17)
129
(21)
133
(25)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

37edo

Approximation of harmonics in 37edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +11.6 +0.0 +2.9 +11.6 +4.1 +0.0 -9.3 +2.9 +0.0 +11.6 +2.7
Relative (%) +0.0 +35.6 +0.0 +8.9 +35.6 +12.8 +0.0 -28.7 +8.9 +0.1 +35.6 +8.4
Steps
(reduced)
37
(0)
59
(22)
74
(0)
86
(12)
96
(22)
104
(30)
111
(0)
117
(6)
123
(12)
128
(17)
133
(22)
137
(26)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

15edo

Approximation of harmonics in 15edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 +13.7 +18.0 -8.8 +0.0 +36.1 +13.7 +8.7 +18.0 +39.5
Relative (%) +0.0 +22.6 +0.0 +17.1 +22.6 -11.0 +0.0 +45.1 +17.1 +10.9 +22.6 +49.3
Steps
(reduced)
15
(0)
24
(9)
30
(0)
35
(5)
39
(9)
42
(12)
45
(0)
48
(3)
50
(5)
52
(7)
54
(9)
56
(11)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

9edo

Approximation of harmonics in 9edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -35.3 +0.0 +13.7 -35.3 -35.5 +0.0 +62.8 +13.7 -18.0 -35.3 -40.5
Relative (%) +0.0 -26.5 +0.0 +10.3 -26.5 -26.6 +0.0 +47.1 +10.3 -13.5 -26.5 -30.4
Steps
(reduced)
9
(0)
14
(5)
18
(0)
21
(3)
23
(5)
25
(7)
27
(0)
29
(2)
30
(3)
31
(4)
32
(5)
33
(6)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

18edo

Approximation of harmonics in 18edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +31.4 +0.0 +13.7 +31.4 +31.2 +0.0 -3.9 +13.7 -18.0 +31.4 +26.1
Relative (%) +0.0 +47.1 +0.0 +20.5 +47.1 +46.8 +0.0 -5.9 +20.5 -27.0 +47.1 +39.2
Steps
(reduced)
18
(0)
29
(11)
36
(0)
42
(6)
47
(11)
51
(15)
54
(0)
57
(3)
60
(6)
62
(8)
65
(11)
67
(13)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

24edo

Approximation of harmonics in 24edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 +13.7 -2.0 -18.8 +0.0 -3.9 +13.7 -1.3 -2.0 +9.5
Relative (%) +0.0 -3.9 +0.0 +27.4 -3.9 -37.7 +0.0 -7.8 +27.4 -2.6 -3.9 +18.9
Steps
(reduced)
24
(0)
38
(14)
48
(0)
56
(8)
62
(14)
67
(19)
72
(0)
76
(4)
80
(8)
83
(11)
86
(14)
89
(17)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(

48edo

Approximation of harmonics in 48edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -2.0 +0.0 -11.3 -2.0 +6.2 +0.0 -3.9 -11.3 -1.3 -2.0 +9.5
Relative (%) +0.0 -7.8 +0.0 -45.3 -7.8 +24.7 +0.0 -15.6 -45.3 -5.3 -7.8 +37.9
Steps
(reduced)
48
(0)
76
(28)
96
(0)
111
(15)
124
(28)
135
(39)
144
(0)
152
(8)
159
(15)
166
(22)
172
(28)
178
(34)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

5edo

Approximation of harmonics in 5edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0 +18 +0 +94 +18 -9 +0 +36 +94 -71 +18 +119
Relative (%) +0.0 +7.5 +0.0 +39.0 +7.5 -3.7 +0.0 +15.0 +39.0 -29.7 +7.5 +49.8
Steps
(reduced)
5
(0)
8
(3)
10
(0)
12
(2)
13
(3)
14
(4)
15
(0)
16
(1)
17
(2)
17
(2)
18
(3)
19
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

6edo

Approximation of harmonics in 6edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +98.0 +0.0 +13.7 +98.0 +31.2 +0.0 -3.9 +13.7 +48.7 +98.0 -40.5
Relative (%) +0.0 +49.0 +0.0 +6.8 +49.0 +15.6 +0.0 -2.0 +6.8 +24.3 +49.0 -20.3
Steps
(reduced)
6
(0)
10
(4)
12
(0)
14
(2)
16
(4)
17
(5)
18
(0)
19
(1)
20
(2)
21
(3)
22
(4)
22
(4)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)s)

10edo

Approximation of harmonics in 10edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +18.0 +0.0 -26.3 +18.0 -8.8 +0.0 +36.1 -26.3 +48.7 +18.0 -0.5
Relative (%) +0.0 +15.0 +0.0 -21.9 +15.0 -7.4 +0.0 +30.1 -21.9 +40.6 +15.0 -0.4
Steps
(reduced)
10
(0)
16
(6)
20
(0)
23
(3)
26
(6)
28
(8)
30
(0)
32
(2)
33
(3)
35
(5)
36
(6)
37
(7)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

11edo

Approximation of harmonics in 11edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 -47.4 +0.0 +50.0 -47.4 +13.0 +0.0 +14.3 +50.0 -5.9 -47.4 +32.2
Relative (%) +0.0 -43.5 +0.0 +45.9 -43.5 +11.9 +0.0 +13.1 +45.9 -5.4 -43.5 +29.5
Steps
(reduced)
11
(0)
17
(6)
22
(0)
26
(4)
28
(6)
31
(9)
33
(0)
35
(2)
37
(4)
38
(5)
39
(6)
41
(8)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

34edo

Approximation of harmonics in 34edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13
Error Absolute (¢) +0.0 +3.9 +0.0 +1.9 +3.9 -15.9 +0.0 +7.9 +1.9 +13.4 +3.9 +6.5
Relative (%) +0.0 +11.1 +0.0 +5.4 +11.1 -45.0 +0.0 +22.3 +5.4 +37.9 +11.1 +18.5
Steps
(reduced)
34
(0)
54
(20)
68
(0)
79
(11)
88
(20)
95
(27)
102
(0)
108
(6)
113
(11)
118
(16)
122
(20)
126
(24)
  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Low priority

125edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

145edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

152edo

  • 241edt
  • 13-limit WE (7.894c)
  • Best nearby ZPI(s)

159edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

166edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

182edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

198edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

212edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

243edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

247edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)