Lumatone mapping for 21edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) m Template works without needing argument now |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Lumatone mapping intro}} | |||
== Whitewood == | |||
The [[Whitewood]] mapping is the one that functions in the closest way to the familiar diatonic scale. | |||
{{Lumatone EDO mapping|n=21|start=17|xstep=3|ystep=-1}} | {{Lumatone EDO mapping|n=21|start=17|xstep=3|ystep=-1}} | ||
== Gorgo == | |||
Since the 7th harmonic is the lowest one that is accurately tuned, the [[gorgo]] mapping works well for creating consonant combinations of notes, and also has a wider range. | Since the 7th harmonic is the lowest one that is accurately tuned, the [[gorgo]] mapping works well for creating consonant combinations of notes, and also has a wider range. | ||
{{Lumatone EDO mapping|n=21|start=3|xstep=4|ystep=1}} | {{Lumatone EDO mapping|n=21|start=3|xstep=4|ystep=1}} | ||
[[ | Or this inverted version of the above, which is based on the [[4L 5s]] scale: | ||
{{Lumatone EDO mapping|n=21|start=9|xstep=5|ystep=-4}} | |||
{{Navbox Lumatone}} |
Latest revision as of 14:43, 23 March 2025
There are many conceivable ways to map 21edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.
Whitewood
The Whitewood mapping is the one that functions in the closest way to the familiar diatonic scale.

17
20
19
1
4
7
10
18
0
3
6
9
12
15
18
20
2
5
8
11
14
17
20
2
5
8
19
1
4
7
10
13
16
19
1
4
7
10
13
16
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
9
12
15
18
0
3
6
9
12
15
18
0
3
6
20
2
5
8
11
14
17
20
2
5
8
7
10
13
16
19
1
4
7
18
0
3
6
9
5
8
Gorgo
Since the 7th harmonic is the lowest one that is accurately tuned, the gorgo mapping works well for creating consonant combinations of notes, and also has a wider range.

3
7
8
12
16
20
3
9
13
17
0
4
8
12
16
14
18
1
5
9
13
17
0
4
8
12
15
19
2
6
10
14
18
1
5
9
13
17
0
4
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
4
8
12
16
20
3
7
11
15
19
2
6
10
14
0
4
8
12
16
20
3
7
11
15
19
13
17
0
4
8
12
16
20
9
13
17
0
4
1
5
Or this inverted version of the above, which is based on the 4L 5s scale:

9
14
10
15
20
4
9
6
11
16
0
5
10
15
20
7
12
17
1
6
11
16
0
5
10
15
3
8
13
18
2
7
12
17
1
6
11
16
0
5
4
9
14
19
3
8
13
18
2
7
12
17
1
6
11
16
0
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
17
1
6
11
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
17
1
6
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
17
3
8
13
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
14
19
3
8
13
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
9
14
19
3
8
13
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
20
4
9
14
19
3
8
13
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
17
1
6
11
5
10
15
20
4
9
14
19
3
8
13
18
2
7
0
5
10
15
20
4
9
14
19
3
8
11
16
0
5
10
15
20
4
6
11
16
0
5
17
1