Constant structure: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 565323445 - Original comment: **
Hkm (talk | contribs)
mNo edit summary
Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit
 
(32 intermediate revisions by 14 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
A [[scale]] is said to be a '''constant structure''' ('''CS''') if its [[interval class]]es are distinct. That is, each [[interval size]] that occurs in the scale always spans the same number of scale steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
 
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2015-11-05 11:43:21 UTC</tt>.<br>
If a scale is a constant structure, that scale can be mapped to an [[isomorphic keyboard]] or similar isomorphic instrument such that each chord with the same interval structure can be played using the same fingering shape.
: The original revision id was <tt>565323445</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A [[scale]] is said to have //constant structure// (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.


The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first.
The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first.


To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes).
In terms of [[Rothenberg propriety]], strictly proper scales are constant structures, and proper but not strictly proper scales are not. Improper scales generally are. However, the [[22edo]] scale C D E vF# G ^Ab B C (<code>4-4-3-2-2-6-1</code>) has both ambiguity (C-vF# 4th equals vF#-C 5th) and contradiction (^Ab-B 2nd exceeds E-G 3rd). The contradiction makes it improper and the ambiguity makes it not a CS.


=Examples=
To determine if a scale is a CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]], in which each entry gives the interval spanning the number of scale steps indicated by the column, beginning with step indicated by the row. In a CS scale, each interval in the matrix must appear in only one column, corresponding to the “constant” number of steps for that interval.


This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1
== Examples ==
Here is the interval matrix of this scale:
||  || **1** || **2** || **3** || **4** || **5** || **(6)** ||
|| **1/1** || 1/1 || 9/8 || 5/4 || 3/2 || 5/3 || 2/1 ||
|| **9/8** || 1/1 || 10/9 || 4/3 || 40/27 || 16/9 || 2/1 ||
|| **5/4** || 1/1 || 6/5 || 4/3 || 8/5 || 9/5 || 2/1 ||
|| **3/2** || 1/1 || 10/9 || 4/3 || 3/2 || 5/3 || 2/1 ||
|| **5/3** || 1/1 || 6/5 || 27/20 || 3/2 || 9/5 || 2/1 ||
Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the "fourth" of this scale - never the "third" or "fifth".


=== Pentatonic scales ===


This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1
Its interval matrix:
||  || **1** || **2** || **3** || **4** || **5** || **(6)** ||
|| **1/1** || 1/1 || 25/24 || &lt;span style="background-color: #ffcc44;"&gt;6/5&lt;/span&gt; || 3/2 || &lt;span style="background-color: #ffcc44;"&gt;5/3&lt;/span&gt; || 2/1 ||
|| **25/24** || 1/1 || 144/125 || 36/25 || &lt;span style="background-color: #ffcc44;"&gt;8/5&lt;/span&gt; || 48/25 || 2/1 ||
|| **6/5** || 1/1 || &lt;span style="background-color: #ffcc44;"&gt;5/4&lt;/span&gt; || 25/18 || &lt;span style="background-color: #ffcc44;"&gt;5/3&lt;/span&gt; || 125/72 || 2/1 ||
|| **3/2** || 1/1 || 10/9 || 4/3 || 25/18 || &lt;span style="background-color: #ffcc44;"&gt;8/5&lt;/span&gt; || 2/1 ||
|| **5/3** || 1/1 || &lt;span style="background-color: #ffcc44;"&gt;6/5&lt;/span&gt; || &lt;span style="background-color: #ffcc44;"&gt;5/4&lt;/span&gt; || 36/25 || 9/5 || 2/1 ||
Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the "second" and "third" steps of the scale. Thus, this scale does not have constant structure.


Here is the interval matrix of this scale:


Another example of a familiar scale that is not CS is the 7-note diatonic scale in [[12edo]].
{| class="wikitable center-all"
Interval matrix as steps of 12edo:
!
||  || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** ||
! 1
|| 0 || 0 || 2 || 4 || 5 || 7 || 9 || 11 || 12 ||
! 2
|| **2** || 0 || 2 || 3 || 5 || 7 || 9 || 11 || 12 ||
! 3
|| **4** || 0 || 1 || 3 || 5 || 7 || 8 || 10 || 12 ||
! 4
|| **7** || 0 || 2 || 4 || &lt;span style="background-color: #ffcc44;"&gt;6&lt;/span&gt; || 7 || 9 || 11 || 12 ||
! 5
|| **9** || 0 || 2 || 4 || 5 || 7 || 9 || 10 || 12 ||
! (6)
|| **11** || 0 || 2 || 3 || 5 || 7 || 8 || 10 || 12 ||
|-
|| **12** || 0 || 1 || 3 || 5 || &lt;span style="background-color: #ffcc44;"&gt;6&lt;/span&gt; || 8 || 10 || 12 ||
! 1/1
| 1/1
| 9/8
| 5/4
| 3/2
| 5/3
| 2/1
|-
! 9/8
| 1/1
| 10/9
| 4/3
| 40/27
| 16/9
| 2/1
|-
! 5/4
| 1/1
| 6/5
| 4/3
| 8/5
| 9/5
| 2/1
|-
! 3/2
| 1/1
| 10/9
| 4/3
| 3/2
| 5/3
| 2/1
|-
! 5/3
| 1/1
| 6/5
| 27/20
| 3/2
| 9/5
| 2/1
|}
Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, always spans four steps of this scale — never three or five.


Interval matrix as note names:
In contrast, this pentatonic scale is ''not'' a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1
||  || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** ||
|| **C** || C || D || E || F || G || A || B || C ||
|| **D** || C || D || Eb || F || G || A || B || C ||
|| **E** || C || Db || Eb || F || G || Ab || B || C ||
|| **F** || C || D || E || &lt;span style="background-color: #ffcc44;"&gt;F#&lt;/span&gt; || G || A || B || C ||
|| **G** || C || D || E || F || G || A || Bb || C ||
|| **A** || C || D || Eb || F || G || Ab || Bb || C ||
|| **B** || C || Db || Eb || F || &lt;span style="background-color: #ffcc44;"&gt;Gb&lt;/span&gt; || Ab || Bb || C ||


F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, would have constant structure.)
Its interval matrix:


=Density of CS Scales in EDO's=
{| class="wikitable center-all"
!
! 1
! 2
! 3
! 4
! 5
! (6)
|-
! 1/1
| 1/1
| 25/24
| <span style="background-color: #ffcc44;">6/5</span>
| 3/2
| <span style="background-color: #ffcc44;">5/3</span>
| 2/1
|-
! 25/24
| 1/1
| 144/125
| 36/25
| <span style="background-color: #ffcc44;">8/5</span>
| 48/25
| 2/1
|-
! 6/5
| 1/1
| <span style="background-color: #ffcc44;">5/4</span>
| 25/18
| <span style="background-color: #ffcc44;">5/3</span>
| 125/72
| 2/1
|-
! 3/2
| 1/1
| 10/9
| 4/3
| 25/18
| <span style="background-color: #ffcc44;">8/5</span>
| 2/1
|-
! 5/3
| 1/1
| <span style="background-color: #ffcc44;">6/5</span>
| <span style="background-color: #ffcc44;">5/4</span>
| 36/25
| 9/5
| 2/1
|}
Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as either two or three steps of the scale. Thus, this scale is not a constant structure.


|| **EDO** || **Number of CS Scales** || **Percent of Scales CS** || **Corresponding Fraction** ||
=== Diatonic scales ===
|| 1 || 1 || 100.0% || 1/1 ||
|| 2 || 1 || 100.0% || 1/1 ||
|| 3 || 2 || 100.0% || 1/1 ||
|| 4 || 2 || 66.7% || 2/3 ||
|| 5 || 5 || 83.3% || 5/6 ||
|| 6 || 4 || 44.4% || 4/9 ||
|| 7 || 11 || 61.1% || 11/18 ||
|| 8 || 11 || 36.7% || 11/30 ||
|| 9 || 22 || 39.3% || 11/28 ||
|| 10 || 20 || 20.2% || 20/99 ||
|| 11 || 45 || 24.2% || 15/62 ||
|| 12 || 47 || 14.0% || 47/335 ||
|| 13 || 85 || 13.5% || 17/126 ||
|| 14 || 88 || 7.6% || 88/1161 ||
|| 15 || 163 || 7.5% || 163/2182 ||
|| 16 || 165 || 4.0% || 11/272 ||
|| 17 || 294 || 3.8% || 49/1285 ||
|| 18 || 313 || 2.2% || 313/14532 ||
|| 19 || 534 || 1.9% || 89/4599 ||
|| 20 || 541 || 1.0% || 541/52377 ||


=See also=
Another example of a familiar scale that is ''not'' CS is the [[12edo]] tuning of the 7-note [[diatonic scale]].
[[Scale properties simplified]]
[[epimorphic]]
[[http://tonalsoft.com/enc/c/constant-structure.aspx|Constant structure]] (Tonalsoft Encyclopedia)
[[http://anaphoria.com/wilsonintroMOS.html#cs|Introduction to Erv Wilson's Moments of Symmetry]]


[[media type="custom" key="26024358"]]</pre></div>
Its interval matrix:
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;constant structure&lt;/title&gt;&lt;/head&gt;&lt;body&gt;A &lt;a class="wiki_link" href="/scale"&gt;scale&lt;/a&gt; is said to have &lt;em&gt;constant structure&lt;/em&gt; (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.&lt;br /&gt;
&lt;br /&gt;
The term &amp;quot;constant structure&amp;quot; was coined by &lt;a class="wiki_link" href="/Erv%20Wilson"&gt;Erv Wilson&lt;/a&gt;. In academic music theory, constant structure is called the partitioning property, but Erv got there first.&lt;br /&gt;
&lt;br /&gt;
To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an &lt;a class="wiki_link" href="/interval%20matrix"&gt;interval matrix&lt;/a&gt; (&lt;a class="wiki_link" href="/Scala"&gt;Scala&lt;/a&gt; can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes).&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:1:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:1 --&gt;Examples&lt;/h1&gt;
&lt;br /&gt;
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1&lt;br /&gt;
Here is the interval matrix of this scale:&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;1&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;2&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;3&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;4&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;5&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;(6)&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;1/1&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;9/8&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;40/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;5/4&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;3/2&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;5/3&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27/20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the &amp;quot;fourth&amp;quot; of this scale - never the &amp;quot;third&amp;quot; or &amp;quot;fifth&amp;quot;.&lt;br /&gt;
{| class="wikitable center-all"
&lt;br /&gt;
!
&lt;br /&gt;
! 1
This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1&lt;br /&gt;
! 2
Its interval matrix:&lt;br /&gt;
! 3
! 4
! 5
! 6
! 7
! (8)
|-
! 0\12
| 0\12
| 2\12
| 4\12
| 5\12
| 7\12
| 9\12
| 11\12
| 12\12
|-
! 2\12
| 0\12
| 2\12
| 3\12
| 5\12
| 7\12
| 9\12
| 10\12
| 12\12
|-
! 4\12
| 0\12
| 1\12
| 3\12
| 5\12
| 7\12
| 8\12
| 10\12
| 12\12
|-
! 5\12
| 0\12
| 2\12
| 4\12
| <span style="background-color: #ffcc44;">6\12</span>
| 7\12
| 9\12
| 11\12
| 12\12
|-
! 7\12
| 0\12
| 2\12
| 4\12
| 5\12
| 7\12
| 9\12
| 10\12
| 12\12
|-
! 9\12
| 0\12
| 2\12
| 3\12
| 5\12
| 7\12
| 8\12
| 10\12
| 12\12
|-
! 11\12
| 0\12
| 1\12
| 3\12
| 5\12
| <span style="background-color: #ffcc44;">6\12</span>
| 8\12
| 10\12
| 12\12
|}


The highlighted intervals, from F to B and from B to F, are the same size in 12edo: 6\12, or 600 cents. From F to B, this interval spans four steps of our diatonic scale (an “augmented fourth”); but from B to F it spans five (a “diminished fifth”). Since the same interval spans different numbers of scale steps at different points in the scale, this scale is not a constant structure.


&lt;table class="wiki_table"&gt;
However, in other tunings of the diatonic scale, the F–B and B–F intervals may have distinct sizes. For example, [[31edo]] (meantone) tunes F–B and B–F to 15\31 (581¢) and 16\31 (619¢) respectively:
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;1&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;2&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;3&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;4&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;5&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;(6)&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;1/1&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;6/5&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;5/3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;25/24&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;144/125&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;36/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;8/5&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;48/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;6/5&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;5/4&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;5/3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;125/72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;3/2&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25/18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;8/5&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;5/3&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;6/5&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;5/4&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;36/25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the &amp;quot;second&amp;quot; and &amp;quot;third&amp;quot; steps of the scale. Thus, this scale does not have constant structure.&lt;br /&gt;
{| class="wikitable center-all"
&lt;br /&gt;
!
&lt;br /&gt;
! 1
Another example of a familiar scale that is not CS is the 7-note diatonic scale in &lt;a class="wiki_link" href="/12edo"&gt;12edo&lt;/a&gt;.&lt;br /&gt;
! 2
Interval matrix as steps of 12edo:&lt;br /&gt;
! 3
! 4
! 5
! 6
! 7
! (8)
|-
! 0\31
| 0\31
| 5\31
| 10\31
| 13\31
| 18\31
| 23\31
| 28\31
| 31\31
|-
! 5\31
| 0\31
| 5\31
| 8\31
| 13\31
| 18\31
| 23\31
| 26\31
| 31\31
|-
! 10\31
| 0\31
| 3\31
| 8\31
| 13\31
| 18\31
| 21\31
| 26\31
| 31\31
|-
! 13\31
| 0\31
| 5\31
| 10\31
| <span style="background-color: #ffcc44;">15\31</span>
| 18\31
| 23\31
| 28\31
| 31\31
|-
! 18\31
| 0\31
| 5\31
| 10\31
| 13\31
| 18\31
| 23\31
| 26\31
| 31\31
|-
! 23\31
| 0\31
| 5\31
| 8\31
| 13\31
| 18\31
| 21\31
| 26\31
| 31\31
|-
! 28\31
| 0\31
| 3\31
| 8\31
| 13\31
| <span style="background-color: #ffcc44;">16\31</span>
| 21\31
| 26\31
| 31\31
|}


Since each interval in the 31edo table appears in a consistent column, the 31edo tuning of the diatonic scale ''is'' a constant structure.


&lt;table class="wiki_table"&gt;
Similarly, the [[22edo]] diatonic scale, which tunes F–B wider than B–F, is ''also'' a constant structure. Even though it has a four-scale-step interval that is larger than a five-step interval (making it “improper”), each distinct interval size still appears in only one column:
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;1&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;2&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;3&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;4&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;5&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;6&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;7&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;(8)&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;2&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;4&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;7&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;6&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;9&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;11&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;12&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;6&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
{| class="wikitable center-all"
Interval matrix as note names:&lt;br /&gt;
!
! 1
! 2
! 3
! 4
! 5
! 6
! 7
! (8)
|-
! 0\22
| 0\22
| 4\22
| 8\22
| 9\22
| 13\22
| 17\22
| 21\22
| 22\22
|-
! 4\22
| 0\22
| 4\22
| 5\22
| 9\22
| 13\22
| 17\22
| 18\22
| 22\22
|-
! 8\22
| 0\22
| 1\22
| 5\22
| 9\22
| 13\22
| 14\22
| 18\22
| 22\22
|-
! 9\22
| 0\22
| 4\22
| 8\22
| <span style="background-color: #ffcc44;">12\22</span>
| 13\22
| 17\22
| 21\22
| 22\22
|-
! 13\22
| 0\22
| 4\22
| 8\22
| 9\22
| 13\22
| 17\22
| 18\22
| 22\22
|-
! 17\22
| 0\22
| 4\22
| 5\22
| 9\22
| 13\22
| 14\22
| 18\22
| 22\22
|-
! 21\22
| 0\22
| 1\22
| 5\22
| 9\22
| <span style="background-color: #ffcc44;">10\22</span>
| 14\22
| 18\22
| 22\22
|}


== Density of CS scales in EDOs ==


&lt;table class="wiki_table"&gt;
{| class="wikitable right-all"
    &lt;tr&gt;
! EDO
        &lt;td&gt;&lt;br /&gt;
! Number of CS Scales
&lt;/td&gt;
! Percent of Scales CS
        &lt;td&gt;&lt;strong&gt;1&lt;/strong&gt;&lt;br /&gt;
! Corresponding Fraction
&lt;/td&gt;
|-
        &lt;td&gt;&lt;strong&gt;2&lt;/strong&gt;&lt;br /&gt;
| 1
&lt;/td&gt;
| 1
        &lt;td&gt;&lt;strong&gt;3&lt;/strong&gt;&lt;br /&gt;
| 100.0%
&lt;/td&gt;
| 1/1
        &lt;td&gt;&lt;strong&gt;4&lt;/strong&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| 2
        &lt;td&gt;&lt;strong&gt;5&lt;/strong&gt;&lt;br /&gt;
| 1
&lt;/td&gt;
| 100.0%
        &lt;td&gt;&lt;strong&gt;6&lt;/strong&gt;&lt;br /&gt;
| 1/1
&lt;/td&gt;
|-
        &lt;td&gt;&lt;strong&gt;7&lt;/strong&gt;&lt;br /&gt;
| 3
&lt;/td&gt;
| 2
        &lt;td&gt;&lt;strong&gt;(8)&lt;/strong&gt;&lt;br /&gt;
| 100.0%
&lt;/td&gt;
| 1/1
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 4
        &lt;td&gt;&lt;strong&gt;C&lt;/strong&gt;&lt;br /&gt;
| 2
&lt;/td&gt;
| 66.7%
        &lt;td&gt;C&lt;br /&gt;
| 2/3
&lt;/td&gt;
|-
        &lt;td&gt;D&lt;br /&gt;
| 5
&lt;/td&gt;
| 5
        &lt;td&gt;E&lt;br /&gt;
| 83.3%
&lt;/td&gt;
| 5/6
        &lt;td&gt;F&lt;br /&gt;
|-
&lt;/td&gt;
| 6
        &lt;td&gt;G&lt;br /&gt;
| 4
&lt;/td&gt;
| 44.4%
        &lt;td&gt;A&lt;br /&gt;
| 4/9
&lt;/td&gt;
|-
        &lt;td&gt;B&lt;br /&gt;
| 7
&lt;/td&gt;
| 11
        &lt;td&gt;C&lt;br /&gt;
| 61.1%
&lt;/td&gt;
| 11/18
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 8
        &lt;td&gt;&lt;strong&gt;D&lt;/strong&gt;&lt;br /&gt;
| 11
&lt;/td&gt;
| 36.7%
        &lt;td&gt;C&lt;br /&gt;
| 11/30
&lt;/td&gt;
|-
        &lt;td&gt;D&lt;br /&gt;
| 9
&lt;/td&gt;
| 22
        &lt;td&gt;Eb&lt;br /&gt;
| 39.3%
&lt;/td&gt;
| 11/28
        &lt;td&gt;F&lt;br /&gt;
|-
&lt;/td&gt;
| 10
        &lt;td&gt;G&lt;br /&gt;
| 20
&lt;/td&gt;
| 20.2%
        &lt;td&gt;A&lt;br /&gt;
| 20/99
&lt;/td&gt;
|-
        &lt;td&gt;B&lt;br /&gt;
| 11
&lt;/td&gt;
| 45
        &lt;td&gt;C&lt;br /&gt;
| 24.2%
&lt;/td&gt;
| 15/62
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 12
        &lt;td&gt;&lt;strong&gt;E&lt;/strong&gt;&lt;br /&gt;
| 47
&lt;/td&gt;
| 14.0%
        &lt;td&gt;C&lt;br /&gt;
| 47/335
&lt;/td&gt;
|-
        &lt;td&gt;Db&lt;br /&gt;
| 13
&lt;/td&gt;
| 85
        &lt;td&gt;Eb&lt;br /&gt;
| 13.5%
&lt;/td&gt;
| 17/126
        &lt;td&gt;F&lt;br /&gt;
|-
&lt;/td&gt;
| 14
        &lt;td&gt;G&lt;br /&gt;
| 88
&lt;/td&gt;
| 7.6%
        &lt;td&gt;Ab&lt;br /&gt;
| 88/1161
&lt;/td&gt;
|-
        &lt;td&gt;B&lt;br /&gt;
| 15
&lt;/td&gt;
| 163
        &lt;td&gt;C&lt;br /&gt;
| 7.5%
&lt;/td&gt;
| 163/2182
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 16
        &lt;td&gt;&lt;strong&gt;F&lt;/strong&gt;&lt;br /&gt;
| 165
&lt;/td&gt;
| 4.0%
        &lt;td&gt;C&lt;br /&gt;
| 11/272
&lt;/td&gt;
|-
        &lt;td&gt;D&lt;br /&gt;
| 17
&lt;/td&gt;
| 294
        &lt;td&gt;E&lt;br /&gt;
| 3.8%
&lt;/td&gt;
| 49/1285
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;F#&lt;/span&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| 18
        &lt;td&gt;G&lt;br /&gt;
| 313
&lt;/td&gt;
| 2.2%
        &lt;td&gt;A&lt;br /&gt;
| 313/14532
&lt;/td&gt;
|-
        &lt;td&gt;B&lt;br /&gt;
| 19
&lt;/td&gt;
| 534
        &lt;td&gt;C&lt;br /&gt;
| 1.9%
&lt;/td&gt;
| 89/4599
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| 20
        &lt;td&gt;&lt;strong&gt;G&lt;/strong&gt;&lt;br /&gt;
| 541
&lt;/td&gt;
| 1.0%
        &lt;td&gt;C&lt;br /&gt;
| 541/52377
&lt;/td&gt;
|}
        &lt;td&gt;D&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;E&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;G&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;A&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Bb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;A&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;D&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Eb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;G&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Ab&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Bb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;B&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Db&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Eb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;F&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;span style="background-color: #ffcc44;"&gt;Gb&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Ab&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Bb&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;C&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
== Novel terminology ==
F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, would have constant structure.)&lt;br /&gt;
An interval that occurs in a scale is ''CS-consistent''{{idiosyncratic}} if it always subtends the same number of scale steps. A scale is thus CS if and only if all its intervals are CS-consistent. This term could be useful because someone might only care about certain primes in a subgroup being CS-consistent.
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Density of CS Scales in EDO's"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt;Density of CS Scales in EDO's&lt;/h1&gt;
&lt;br /&gt;


== See also ==


&lt;table class="wiki_table"&gt;
* [[Gallery of CS Scales]]
    &lt;tr&gt;
* [[Glossary of scale properties]]
        &lt;td&gt;&lt;strong&gt;EDO&lt;/strong&gt;&lt;br /&gt;
* [[epimorphic]]
&lt;/td&gt;
* [http://tonalsoft.com/enc/c/constant-structure.aspx Constant structure] (Tonalsoft Encyclopedia)
        &lt;td&gt;&lt;strong&gt;Number of CS Scales&lt;/strong&gt;&lt;br /&gt;
* [http://anaphoria.com/wilsonintroMOS.html#cs Introduction to Erv Wilson's Moments of Symmetry]
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;Percent of Scales CS&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;Corresponding Fraction&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;100.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;100.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;100.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;66.7%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;83.3%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44.4%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;61.1%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/18&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;36.7%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/30&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;39.3%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/28&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20.2%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20/99&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24.2%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/62&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;47/335&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;85&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13.5%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/126&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7.6%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88/1161&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;163&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7.5%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;163/2182&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/272&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;294&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3.8%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;49/1285&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;313&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2.2%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;313/14532&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;534&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1.9%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;89/4599&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;541&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1.0%&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;541/52377&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
[[Category:Scale]]
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="See also"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;See also&lt;/h1&gt;
[[Category:Terms]]
&lt;a class="wiki_link" href="/Scale%20properties%20simplified"&gt;Scale properties simplified&lt;/a&gt;&lt;br /&gt;
[[Category:Erv Wilson]]
&lt;a class="wiki_link" href="/epimorphic"&gt;epimorphic&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://tonalsoft.com/enc/c/constant-structure.aspx" rel="nofollow"&gt;Constant structure&lt;/a&gt; (Tonalsoft Encyclopedia)&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://anaphoria.com/wilsonintroMOS.html#cs" rel="nofollow"&gt;Introduction to Erv Wilson's Moments of Symmetry&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMediaRule:0:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/custom/26024358?h=0&amp;amp;w=0&amp;quot; class=&amp;quot;WikiMedia WikiMediaCustom&amp;quot; id=&amp;quot;wikitext@@media@@type=&amp;amp;quot;custom&amp;amp;quot; key=&amp;amp;quot;26024358&amp;amp;quot;&amp;quot; title=&amp;quot;Custom Media&amp;quot;/&amp;gt; --&gt;&lt;script type="text/javascript"&gt;
/*&lt;![CDATA[*/
document.write('&lt;style type="text/css"&gt; .wiki_table td { padding: 5px; text-align:center; } &lt;\/style&gt;');
/*]]&gt;*/
&lt;/script&gt;&lt;!-- ws:end:WikiTextMediaRule:0 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 21:40, 7 August 2025

A scale is said to be a constant structure (CS) if its interval classes are distinct. That is, each interval size that occurs in the scale always spans the same number of scale steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.

If a scale is a constant structure, that scale can be mapped to an isomorphic keyboard or similar isomorphic instrument such that each chord with the same interval structure can be played using the same fingering shape.

The term "constant structure" was coined by Erv Wilson. In academic music theory, constant structure is called the partitioning property, but Erv got there first.

In terms of Rothenberg propriety, strictly proper scales are constant structures, and proper but not strictly proper scales are not. Improper scales generally are. However, the 22edo scale C D E vF# G ^Ab B C (4-4-3-2-2-6-1) has both ambiguity (C-vF# 4th equals vF#-C 5th) and contradiction (^Ab-B 2nd exceeds E-G 3rd). The contradiction makes it improper and the ambiguity makes it not a CS.

To determine if a scale is a CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an interval matrix, in which each entry gives the interval spanning the number of scale steps indicated by the column, beginning with step indicated by the row. In a CS scale, each interval in the matrix must appear in only one column, corresponding to the “constant” number of steps for that interval.

Examples

Pentatonic scales

This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1

Here is the interval matrix of this scale:

1 2 3 4 5 (6)
1/1 1/1 9/8 5/4 3/2 5/3 2/1
9/8 1/1 10/9 4/3 40/27 16/9 2/1
5/4 1/1 6/5 4/3 8/5 9/5 2/1
3/2 1/1 10/9 4/3 3/2 5/3 2/1
5/3 1/1 6/5 27/20 3/2 9/5 2/1

Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, always spans four steps of this scale — never three or five.

In contrast, this pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1

Its interval matrix:

1 2 3 4 5 (6)
1/1 1/1 25/24 6/5 3/2 5/3 2/1
25/24 1/1 144/125 36/25 8/5 48/25 2/1
6/5 1/1 5/4 25/18 5/3 125/72 2/1
3/2 1/1 10/9 4/3 25/18 8/5 2/1
5/3 1/1 6/5 5/4 36/25 9/5 2/1

Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as either two or three steps of the scale. Thus, this scale is not a constant structure.

Diatonic scales

Another example of a familiar scale that is not CS is the 12edo tuning of the 7-note diatonic scale.

Its interval matrix:

1 2 3 4 5 6 7 (8)
0\12 0\12 2\12 4\12 5\12 7\12 9\12 11\12 12\12
2\12 0\12 2\12 3\12 5\12 7\12 9\12 10\12 12\12
4\12 0\12 1\12 3\12 5\12 7\12 8\12 10\12 12\12
5\12 0\12 2\12 4\12 6\12 7\12 9\12 11\12 12\12
7\12 0\12 2\12 4\12 5\12 7\12 9\12 10\12 12\12
9\12 0\12 2\12 3\12 5\12 7\12 8\12 10\12 12\12
11\12 0\12 1\12 3\12 5\12 6\12 8\12 10\12 12\12

The highlighted intervals, from F to B and from B to F, are the same size in 12edo: 6\12, or 600 cents. From F to B, this interval spans four steps of our diatonic scale (an “augmented fourth”); but from B to F it spans five (a “diminished fifth”). Since the same interval spans different numbers of scale steps at different points in the scale, this scale is not a constant structure.

However, in other tunings of the diatonic scale, the F–B and B–F intervals may have distinct sizes. For example, 31edo (meantone) tunes F–B and B–F to 15\31 (581¢) and 16\31 (619¢) respectively:

1 2 3 4 5 6 7 (8)
0\31 0\31 5\31 10\31 13\31 18\31 23\31 28\31 31\31
5\31 0\31 5\31 8\31 13\31 18\31 23\31 26\31 31\31
10\31 0\31 3\31 8\31 13\31 18\31 21\31 26\31 31\31
13\31 0\31 5\31 10\31 15\31 18\31 23\31 28\31 31\31
18\31 0\31 5\31 10\31 13\31 18\31 23\31 26\31 31\31
23\31 0\31 5\31 8\31 13\31 18\31 21\31 26\31 31\31
28\31 0\31 3\31 8\31 13\31 16\31 21\31 26\31 31\31

Since each interval in the 31edo table appears in a consistent column, the 31edo tuning of the diatonic scale is a constant structure.

Similarly, the 22edo diatonic scale, which tunes F–B wider than B–F, is also a constant structure. Even though it has a four-scale-step interval that is larger than a five-step interval (making it “improper”), each distinct interval size still appears in only one column:

1 2 3 4 5 6 7 (8)
0\22 0\22 4\22 8\22 9\22 13\22 17\22 21\22 22\22
4\22 0\22 4\22 5\22 9\22 13\22 17\22 18\22 22\22
8\22 0\22 1\22 5\22 9\22 13\22 14\22 18\22 22\22
9\22 0\22 4\22 8\22 12\22 13\22 17\22 21\22 22\22
13\22 0\22 4\22 8\22 9\22 13\22 17\22 18\22 22\22
17\22 0\22 4\22 5\22 9\22 13\22 14\22 18\22 22\22
21\22 0\22 1\22 5\22 9\22 10\22 14\22 18\22 22\22

Density of CS scales in EDOs

EDO Number of CS Scales Percent of Scales CS Corresponding Fraction
1 1 100.0% 1/1
2 1 100.0% 1/1
3 2 100.0% 1/1
4 2 66.7% 2/3
5 5 83.3% 5/6
6 4 44.4% 4/9
7 11 61.1% 11/18
8 11 36.7% 11/30
9 22 39.3% 11/28
10 20 20.2% 20/99
11 45 24.2% 15/62
12 47 14.0% 47/335
13 85 13.5% 17/126
14 88 7.6% 88/1161
15 163 7.5% 163/2182
16 165 4.0% 11/272
17 294 3.8% 49/1285
18 313 2.2% 313/14532
19 534 1.9% 89/4599
20 541 1.0% 541/52377

Novel terminology

An interval that occurs in a scale is CS-consistent[idiosyncratic term] if it always subtends the same number of scale steps. A scale is thus CS if and only if all its intervals are CS-consistent. This term could be useful because someone might only care about certain primes in a subgroup being CS-consistent.

See also