Gallery of 3-SN scales: Difference between revisions

VIxen (talk | contribs)
m Update linking
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
See [[SN scale]] and [[Rank-3 scale]].
See [[SN scale]] and [[Rank-3 scale]].


Line 3,380: Line 3,378:
{| class="wikitable"
{| class="wikitable"
|+Rank-2 temperings (mode -3)
|+Rank-2 temperings (mode -3)
!Equivalence
! Equivalence
!Step pattern
! Step pattern
!Scale
! Scale
!Comma list
! Comma list
|-
|-
|m = s
| m = s
|[[7L 5s|sLLsLsLsLLsL]]
| [[7L 5s|sLLsLsLsLLsL]]
|[[Meantone family|Meantone]][12]
| [[Meantone]][12]
|81/80
| 81/80
|-
|-
|L = m
| L = m
|sLLsLLLsLLsL
| sLLsLLLsLLsL
|[[Dimipent family|Diminished]][12] MODMOS
| [[Diminished]][12] MODMOS
|648/625
| 648/625
|-
|-
|L = s
| L = s
|[[11L 1s|LLLLLsLLLLLL]]
| [[11L 1s|LLLLLsLLLLLL]]
|[[Ripple family|Ripple]][12]
| [[Ripple]][12]
|6561/6250
| 6561/6250
|-
|-
|L - m = m - s
| L - m = m - s
|dLLdLsLdLLdL
| dLLdLsLdLLdL
|[[Augmented family|Augmented]][12] MODMOS
| [[Augmented]][12] modmos
|128/125
| 128/125
|-
|-
|s = 0
| s = 0
|[[7L 1s|LLLsLLLL]]
| [[7L 1s|LLLsLLLL]]
|[[Porcupine family#Porcupine|Porcupine]][8]
| [[Porcupine]][8]
|250/243
| 250/243
|}
|}
=====[[SNS (2/1, 3/2, 6/5: 126/125)-12|(2/1, 3/2, 6/5: 126/125)[12] (Starling)]]=====
=====[[SNS (2/1, 3/2, 6/5: 126/125)-12|(2/1, 3/2, 6/5: 126/125)[12] (Starling)]]=====
{| class="wikitable"
{| class="wikitable"
Line 3,803: Line 3,802:
{| class="wikitable"
{| class="wikitable"
|+Rank-2 temperings (mode -3)
|+Rank-2 temperings (mode -3)
!Equivalence
! Equivalence
!Step pattern
! Step pattern
!Scale
! Scale
!Comma list
! Comma list
|-
|-
|m = s
| m = s
|[[7L 5s|sLLsLsLsLLsL]]
| [[7L 5s|sLLsLsLsLLsL]]
|[[Meanenneadecal]][12] or [[Meantone family#Flattone|Flattone]][12]
| [[Meanenneadecal]][12] or [[Flattone]][12]
|45/44, 81/80
| 45/44, 81/80
|-
|-
|L = m
| L = m
|sLLsLLLsLLsL
| sLLsLLLsLLsL
|[[Dimipent family|Diminished]][12] MODMOS
| [[Diminished]][12] modmos
|100/99, 128/121
| 100/99, 128/121
|-
|-
|L - m = m - s
| L - m = m - s
|dLLdLsLdLLdL
| dLLdLsLdLLdL
|[[Augmented family#Augene|Augene]][12] MODMOS
| [[Augene]][12] modmos
|100/99, 128/125
| 100/99, 128/125
|-
|-
|s = 0
| s = 0
|[[7L 1s|LLLsLLLL]]
| [[7L 1s|LLLsLLLL]]
|[[Porcupine family#Porkypine|Porkypine]][8]
| [[Porcupine]][8]
|55/54, 100/99
| 55/54, 100/99
|}
|}


Line 4,592: Line 4,591:
46-ET: (2, 1, 1); 72-ET: (4, 2, 1); 80-ET: (4, 1, 2); 118-ET: (6, 3, 2); 152-ET: (8, 3, 3); 171-ET: (9, 4, 3); 224-ET: (12, 5, 4); 270-ET: (14, 6, 5); 494-ET: (26, 11, 9); 612-ET: (32, 14, 11)
46-ET: (2, 1, 1); 72-ET: (4, 2, 1); 80-ET: (4, 1, 2); 118-ET: (6, 3, 2); 152-ET: (8, 3, 3); 171-ET: (9, 4, 3); 224-ET: (12, 5, 4); 270-ET: (14, 6, 5); 494-ET: (26, 11, 9); 612-ET: (32, 14, 11)


===(2/1, 3/2, 100/81)===
==2.3.5; [[Hemifamity family#Hemifamity|Hemifamity]] ==
====(2/1, 3/2, 100/81: 4375/4374)[7] (Ragismic)====
===((2/1, 3/2)[5], 10/9)===
{| class="wikitable"
====[[SNS ((2/1, 3/2)-5, 10/9)-10|((2/1, 3/2)[5], 10/9)[10]]]====
!Step signature
5L 2M 3s = (10/9, 16/15, 81/80)
!Steps in JI
 
!Step sizes in cents
81/80 9/8 6/5 4/3 27/20 3/2 8/5 16/9 9/5 2/1 as sLMLsLMLsL
|-
 
|2L 1m 4s
L = M -> sLLLsLLLsL Dicot[10] MODMOS; M = s -> sLsLsLsLsL Blackwood[10]; L = s -> ssLsssLsss Supersharp[10] MODMOS;
|(2500/2187~8/7, ~9/8, ~27/25)
 
|(231.1884c, 203.974c, 133.4123c)
L - M = M - s -> dLsLdLsLdL Srutal[10] MODMOS
|}
 
{| class="wikitable"
s = 0 -> LsLLsLL Meantone[7]; M = 0 -> sLLsLLsL Father[8]
!Mode number
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-17|((2/1, 3/2)[5], 10/9: 5120/5103)[17] (Hemifamity)]]====
!Mode in JI
5L 2m 10s = (~35/32, 256/243~21/20, 81/80~64/63) = (153.2376c, 85.8342c, 24.4931c) TE
!Step pattern
 
![[Mode height]]
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
|-
 
|  -3
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss;
|~ 9/8 175/144 25/18 3/2 81/50 50/27 2/1
 
|msLssLs
L - m = m - s -> Garibaldi[17]; s = 0 -> LsLLLsL Dominant[7]; m = 0 -> sLssLssLssLssLs
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-17|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[17] (Akea)]]=====
5L 2m 10s = (35/32~12/11, 256/243~21/20, 81/80~64/63~55/54) = (156.6236c, 85.7981c, 26.2356c) TE
 
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
 
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss; s = 0 -> LsLLLsL Arnold[7]; m = 0 -> sLssLssLssLssLs
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-24|((2/1, 3/2)[5], 10/9: 5120/5103)[24] (Hemifamity)]]====
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63) = (132.1305c, 61.3411c, 24.4931c) TE
 
~ 64/63 35/32 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 35/24 40/27 3/2 32/21 105/64 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
 
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Dominant[7]
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-24|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[24] (Akea)]]=====
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63~55/54) = (127.002c, 59.5625c, 26.2356c) TE
 
~ 64/63 12/11 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 16/11 40/27 3/2 32/21 18/11 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
 
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Arnold[7]
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-31|((2/1, 3/2)[5], 10/9: 5120/5103)[31] (Hemifamity)]]====
5L 2m 24s = (~1225/1152, ~49/48, 81/80~64/63) = (107.6374c, 36.848c, 24.4931c) TE
 
~ 64/63 36/35 35/32 10/9 9/8 8/7 7/6 32/27 6/5 128/105 35/27 21/16 4/3 27/20 48/35 35/24 40/27 3/2 32/21 54/35 105/64 5/3 27/16 12/7 7/4 16/9 9/5 64/35 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
 
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss; L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
 
s = 0 -> LsLLLsL Dominant[7]; m = 0 -> ssLssssssLssssLssssLssssssLss Immunity[29] MODMOS
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-31|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[31] (Akea)]]=====
5L 2m 24s = (~35/33, 49/48~56/55, 81/80~64/63~55/54) = (100.7664c, 33.3269c, 26.2356c) TE
 
~ 64/63 36/35 12/11 10/9 9/8 8/7 7/6 32/27 6/5 11/9 35/27 21/16 4/3 27/20 11/8 16/11 40/27 3/2 32/21 54/35 18/11 5/3 27/16 12/7 7/4 16/9 9/5 11/6 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
 
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss, L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
 
s = 0 -> LsLLLsL Arnold[7]; m = 0 -> ssLssssssLssssLssssLssssssLss
===((2/1, 3/2)[12], 81/80) or ((2/1, 3/2)[12], 64/63) ===
====[[SNS ((2/1, 3/2)-12, 64/63: 5120/5103)-24|((2/1, 3/2)[12], 64/63: 5120/5013)[24] (Hemifamity)]]====
5L 7M 12s = (~135/128, ~28/27, 81/80~64/63) = (95.2825c, 61.3411c, 24.4931c) TE
 
~ 64/63 15/14 243/224 9/8 8/7 32/27 6/5 81/64 9/7 4/3 27/20 10/7 81/56 3/2 32/21 45/28 80/49 27/16 12/7 16/9 9/5 243/128 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
 
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
=====[[SNS ((2/1, 3/2)-12, 64/63: 441/440, 896/891)-24|((2/1, 3/2)[12], 64/63: 441/440, 896/891)[24] (Pele)]]=====
5L 7M 12s = (135/128~35/33, 28/27~33/32, 81/80~64/63~99/98) = (97.5911c, 58.2557c, 25.3165c) TE
 
~ 64/63 15/14 12/11 9/8 8/7 32/27 6/5 14/11 9/7 4/3 27/20 10/7 16/11 3/2 32/21 45/28 18/11 27/16 12/7 16/9 9/5 12/11 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
 
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
====[[SNS ((2/1, 3/2)-12, 64/63: 5120/5013)-36|((2/1, 3/2)[12], 64/63: 5120/5013)[36] (Hemifamity)]]====
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63) = (70.7894c, 36.848c, 24.4931c) TE
 
~ 64/63 36/35 15/14 243/224 54/49 9/8 8/7 81/70 32/27 6/5 128/105 81/64 9/7 64/49 4/3 27/20 48/35 10/7 81/56 72/49 3/2 32/21 54/35 45/28 80/49 81/49 27/16 12/7 243/140 16/9 9/5 64/35 243/128 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
 
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
 
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
=====[[SNS ((2/1, 3/2)-12, 64/63: 441/440, 896/891)-36|((2/1, 3/2)[12], 64/63: 441/440, 896/891)[36] (Pele)]]=====
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63~99/98) = (72.2746c, 32.9392c, 25.3165c) TE
 
~ 64/63 36/35 15/14 12/11 54/49 9/8 8/7 64/55 32/27 6/5 128/105 14/11 9/7 64/49 4/3 27/20 48/35 10/7 16/11 72/49 3/2 32/21 54/35 45/28 18/11 81/49 27/16 12/7 96/55 16/9 9/5 64/35 22/21 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
 
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
 
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
 
==2.3.25==
===(2/1, 3/2, 100/81)===
====(2/1, 3/2, 100/81)[7]====
=====(2/1, 3/2, 100/81: 4375/4374)[7] (Ragismic)=====
{| class="wikitable"
!Step signature
!Steps in JI
!Step sizes in cents
|-
|2L 1m 4s
|(2500/2187~8/7, ~9/8, ~27/25)
|(231.1884c, 203.974c, 133.4123c)
|}
{| class="wikitable"
!Mode number
!Mode in JI
!Step pattern
![[Mode height]]
|-
|  -3
|~ 9/8 175/144 25/18 3/2 81/50 50/27 2/1
|msLssLs
|  0.0158
|  0.0158
|-
|-
Line 4,620: Line 4,705:
|-
|-
|  -1
|  -1
|~ 8/7 100/81 25/18 3/2 12/7 50/27 2/1
|~ 8/7 100/81 25/18 3/2 12/7 50/27 2/1
|LsmsLss
|  0.037
|-
|  0
|~ 27/25 100/81 4/3 3/2 81/50 50/27 2/1
|sLsmsLs
|  0
|-
|  1
|~ 27/25 7/6 4/3 36/25 81/50 7/4 2/1
|ssLsmsL
|  -0.037
|-
|  2
|~ 8/7 100/81 4/3 32/21 288/175 50/27 2/1
|LssLsms
|  0.0211
|-
|  3
|~ 27/25 100/81 4/3 36/25 288/175 16/9 2/1
|sLssLsm
|  -0.0158
|}
 
=====[[SNS_(2/1,_3/2,_100/81:_1225/1224,_1701/1700)-7|(2/1, 3/2, 100/81: 1225/1224, 1701/1700)[7]]]=====
{| class="wikitable"
!Step signature
!Steps in JI
!Step sizes in cents
|-
|2L 1m 4s
|(2500/2187~8/7, ~9/8, ~27/25)
|(231.5807c, 203.8094c, 133.2573c)
|}
{| class="wikitable"
!Mode number
!Mode in JI
!Step pattern
![[Mode height]]
|-
|  -3
|~ 9/8 17/14 25/18 3/2 34/21 50/27 2/1
|msLssLs
|  0.0157
|-
|  -2
|~ 27/25 17/14 21/16 3/2 34/21 7/4 2/1
|smsLssL
|  -0.0214
|-
|  -1
|~ 8/7 21/17 25/18 3/2 12/7 50/27 2/1
|LsmsLss
|LsmsLss
|  0.037
|  0.0371
|-
|-
|  0
|  0
|~ 27/25 100/81 4/3 3/2 81/50 50/27 2/1
|~ 27/25 21/17 4/3 3/2 34/21 50/27 2/1
|sLsmsLs
|sLsmsLs
|  0
|  0
|-
|-
|  1
|  1
|~ 27/25 7/6 4/3 36/25 81/50 7/4 2/1
|~ 27/25 7/6 4/3 36/25 34/21 7/4 2/1
|ssLsmsL
|ssLsmsL
|  -0.037
|  -0.0371
|-
|-
|  2
|  2
|~ 8/7 100/81 4/3 32/21 288/175 50/27 2/1
|~ 8/7 21/17 4/3 32/21 28/17 50/27 2/1
|LssLsms
|LssLsms
|  0.0211
|  0.0214
|-
|-
|  3
|  3
|~ 27/25 100/81 4/3 36/25 288/175 16/9 2/1
|~ 27/25 21/17 4/3 36/25 28/17 16/9 2/1
|sLssLsm
|sLssLsm
|  -0.0158
|  -0.0157
|}
|}


==2.3.5; [[Hemifamity family#Hemifamity|Hemifamity]] ==
===((2/1, 3/2)[5], 10/9)===
====[[SNS ((2/1, 3/2)-5, 10/9)-10|((2/1, 3/2)[5], 10/9)[10]]]====
5L 2M 3s = (10/9, 16/15, 81/80)
81/80 9/8 6/5 4/3 27/20 3/2 8/5 16/9 9/5 2/1 as sLMLsLMLsL
L = M -> sLLLsLLLsL Dicot[10] MODMOS; M = s -> sLsLsLsLsL Blackwood[10]; L = s -> ssLsssLsss Supersharp[10] MODMOS;
L - M = M - s -> dLsLdLsLdL Srutal[10] MODMOS
s = 0 -> LsLLsLL Meantone[7]; M = 0 -> sLLsLLsL Father[8]
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-17|((2/1, 3/2)[5], 10/9: 5120/5103)[17] (Hemifamity)]]====
5L 2m 10s = (~35/32, 256/243~21/20, 81/80~64/63) = (153.2376c, 85.8342c, 24.4931c) TE
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss;
L - m = m - s -> Garibaldi[17]; s = 0 -> LsLLLsL Dominant[7]; m = 0 -> sLssLssLssLssLs
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-17|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[17] (Akea)]]=====
5L 2m 10s = (35/32~12/11, 256/243~21/20, 81/80~64/63~55/54) = (156.6236c, 85.7981c, 26.2356c) TE
~ 64/63 10/9 9/8 32/27 6/5 21/16 4/3 27/20 40/27 3/2 32/21 5/3 27/16 16/9 9/5 63/32 2/1 as sLsmsLssLssLsmsLs
m = s -> sLsssLssLssLsssLs; L = m -> sLsLsLssLssLsLsLs; L = s -> sssLsssssssssLsss; s = 0 -> LsLLLsL Arnold[7]; m = 0 -> sLssLssLssLssLs
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-24|((2/1, 3/2)[5], 10/9: 5120/5103)[24] (Hemifamity)]]====
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63) = (132.1305c, 61.3411c, 24.4931c) TE
~ 64/63 35/32 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 35/24 40/27 3/2 32/21 105/64 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Dominant[7]
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-24|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[24] (Akea)]]=====
5L 2m 17s = (~175/162, ~28/27, 81/80~64/63~55/54) = (127.002c, 59.5625c, 26.2356c) TE
~ 64/63 12/11 10/9 9/8 7/6 32/27 6/5 35/27 21/16 4/3 27/20 16/11 40/27 3/2 32/21 18/11 5/3 27/16 7/4 16/9 9/5 35/18 63/32 2/1 as sLssmssLsssLsssLssmssLss
m = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = m -> sLssLssLsssLsssLssLssLss; L = s -> LLLLsLLLLLLLLLLLLLsLLLLL; s = 0 -> LsLLLsL Arnold[7]
====[[SNS ((2/1, 3/2)-5, 10/9: 5120/5103)-31|((2/1, 3/2)[5], 10/9: 5120/5103)[31] (Hemifamity)]]====
5L 2m 24s = (~1225/1152, ~49/48, 81/80~64/63) = (107.6374c, 36.848c, 24.4931c) TE
~ 64/63 36/35 35/32 10/9 9/8 8/7 7/6 32/27 6/5 128/105 35/27 21/16 4/3 27/20 48/35 35/24 40/27 3/2 32/21 54/35 105/64 5/3 27/16 12/7 7/4 16/9 9/5 64/35 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss; L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
s = 0 -> LsLLLsL Dominant[7]; m = 0 -> ssLssssssLssssLssssLssssssLss Immunity[29] MODMOS
=====[[SNS ((2/1, 3/2)-5, 10/9: 385/384, 2200/2187)-31|((2/1, 3/2)[5], 10/9: 385/384, 2200/2187)[31] (Akea)]]=====
5L 2m 24s = (~35/33, 49/48~56/55, 81/80~64/63~55/54) = (100.7664c, 33.3269c, 26.2356c) TE
~ 64/63 36/35 12/11 10/9 9/8 8/7 7/6 32/27 6/5 11/9 35/27 21/16 4/3 27/20 11/8 16/11 40/27 3/2 32/21 54/35 18/11 5/3 27/16 12/7 7/4 16/9 9/5 11/6 35/18 63/32 2/1 as ssLsssmsssLssssLssssLsssmsssLss
m = s -> ssLsssssssLssssLssssLsssssssLss Rodan[31] MODMOS; L = m -> ssLsssLsssLssssLssssLsssLsssLss, L = s -> LLLLLLsLLLLLLLLLLLLLLLLsLLLLLLL;
s = 0 -> LsLLLsL Arnold[7]; m = 0 -> ssLssssssLssssLssssLssssssLss
===((2/1, 3/2)[12], 81/80) or ((2/1, 3/2)[12], 64/63) ===
====[[SNS ((2/1, 3/2)-12, 64/63: 5120/5103)-24|((2/1, 3/2)[12], 64/63: 5120/5013)[24] (Hemifamity)]]====
5L 7M 12s = (~135/128, ~28/27, 81/80~64/63) = (95.2825c, 61.3411c, 24.4931c) TE
~ 64/63 15/14 243/224 9/8 8/7 32/27 6/5 81/64 9/7 4/3 27/20 10/7 81/56 3/2 32/21 45/28 80/49 27/16 12/7 16/9 9/5 243/128 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
=====[[SNS ((2/1, 3/2)-12, 64/63: 441/440, 896/891)-24|((2/1, 3/2)[12], 64/63: 441/440, 896/891)[24] (Pele)]]=====
5L 7M 12s = (135/128~35/33, 28/27~33/32, 81/80~64/63~99/98) = (97.5911c, 58.2557c, 25.3165c) TE
~ 64/63 15/14 12/11 9/8 8/7 32/27 6/5 14/11 9/7 4/3 27/20 10/7 16/11 3/2 32/21 45/28 18/11 27/16 12/7 16/9 9/5 12/11 27/14 2/1 as sLsMsMsLsMsLsMsLsMsMsLsM
L = M -> sLsLsLsLsLsLsLsLsLsLsLsLsL; M = s -> sLsssssLsssLsssLsssssLss Immunity[24] MODMOS; L = s -> sssLsLsssLsssLsssLsLsssL; s = 0 -> LssLsLsLssLs Dominant[12]
====[[SNS ((2/1, 3/2)-12, 64/63: 5120/5013)-36|((2/1, 3/2)[12], 64/63: 5120/5013)[36] (Hemifamity)]]====
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63) = (70.7894c, 36.848c, 24.4931c) TE
~ 64/63 36/35 15/14 243/224 54/49 9/8 8/7 81/70 32/27 6/5 128/105 81/64 9/7 64/49 4/3 27/20 48/35 10/7 81/56 72/49 3/2 32/21 54/35 45/28 80/49 81/49 27/16 12/7 243/140 16/9 9/5 64/35 243/128 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
=====[[SNS ((2/1, 3/2)-12, 64/63: 441/440, 896/891)-36|((2/1, 3/2)[12], 64/63: 441/440, 896/891)[36] (Pele)]]=====
5L 7M 12s = (~25/24, ~49/48, 81/80~64/63~99/98) = (72.2746c, 32.9392c, 25.3165c) TE
~ 64/63 36/35 15/14 12/11 54/49 9/8 8/7 64/55 32/27 6/5 128/105 14/11 9/7 64/49 4/3 27/20 48/35 10/7 16/11 72/49 3/2 32/21 54/35 45/28 18/11 81/49 27/16 12/7 96/55 16/9 9/5 64/35 22/21 27/14 96/49 2/1 as ssLssMssMssLssMssLssMssLssMssMssLssM
L = M -> ssLssLssLssLssLssLssLssLssLssLssLssLssL; M = s -> ssLssssssssLsssssLsssssLssssssssLsss Rodan[36] MODMOS; L = s -> sssssLssLsssssLsssssLsssssLssLsssssL;
s = 0 -> LssLsLsLssLs Dominant[12]; m = 0 -> ssLssssssLssssLssssLssssssLsss Immunity[29] MODMOS
==2.5.9; Marvel ==
==2.5.9; Marvel ==
=== ((2/1, 5/4)[3], 9/8)===
=== ((2/1, 5/4)[3], 9/8)===
Line 5,089: Line 5,143:
[[Category:Lists of scales]]
[[Category:Lists of scales]]
[[Category:Rank 3]]
[[Category:Rank 3]]
{{Todo| cleanup }}