1889edo: Difference between revisions
mNo edit summary |
FilterNashi (talk | contribs) No edit summary |
||
(11 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ | {{ED intro}} | ||
== Theory == | |||
1889edo is strong in the [[23-limit]], though [[1578edo|1578]], which among other things has a lower 23-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]], rather puts it in the shade. It is distinctly [[consistent]] through the 27-odd-limit, but not, unlike 1578, to the 29-odd-limit. Even so, it should be noted that it supplies the [[optimal patent val]] for the 7-limit [[monzismic]] temperament. | 1889edo is strong in the [[23-limit]], though [[1578edo|1578]], which among other things has a lower 23-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]], rather puts it in the shade. It is distinctly [[consistent]] through the 27-odd-limit, but not, unlike 1578, to the 29-odd-limit. Even so, it should be noted that it supplies the [[optimal patent val]] for the 7-limit [[monzismic]] temperament. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|1889|columns= | {{Harmonics in equal|1889|columns=9}} | ||
{{Harmonics in equal|1889|columns=9|start=10|title=Approximation of prime harmonics in 1889edo (continued)}} | |||
=== Subsets and supersets === | === Subsets and supersets === | ||
1889edo is the 290th [[prime edo]]. | 1889edo is the 290th [[prime edo]]. | ||
== Intervals == | |||
{{Main|Table of 1889edo intervals}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{Monzo| 2994 -1889 }} | |||
| {{Mapping| 1889 2994 }} | |||
| −0.0012 | |||
| 0.0012 | |||
| 0.19 | |||
|- | |||
| 2.3.5 | |||
| {{Monzo| 54 -37 2 }}, {{monzo| -66 -36 53 }} | |||
| {{Mapping| 1889 2994 4386 }} | |||
| +0.0104 | |||
| 0.0163 | |||
| 2.57 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, {{monzo| -1 4 11 -1 }}, {{monzo| -57 16 10 3 }} | |||
| {{Mapping| 1889 2994 4386 5303 }} | |||
| +0.0131 | |||
| 0.0149 | |||
| 2.35 | |||
|- | |||
| 2.3.5.7.11 | |||
| 4375/4374, 151263/151250, 820125/819896, {{monzo| -28 7 7 -1 1 }} | |||
| {{Mapping| 1889 2994 4386 5303 6535 }} | |||
| +0.0055 | |||
| 0.0201 | |||
| 3.16 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 4225/4224, 4375/4374, 6656/6655, 151263/151250, 4100625/4100096 | |||
| {{Mapping| 1889 2994 4386 5303 6535 6990 }} | |||
| +0.0084 | |||
| 0.0194 | |||
| 3.05 | |||
|- | |||
| 2.3.5.7.11.13.17 | |||
| 4225/4224, 4375/4374, 6656/6655, 12376/12375, 14875/14872, 194481/194480 | |||
| {{Mapping| 1889 2994 4386 5303 6535 6990 7721 }} | |||
| +0.0120 | |||
| 0.0200 | |||
| 3.15 | |||
|- | |||
| 2.3.5.7.11.13.17.19 | |||
| 4225/4224, 4375/4374, 5985/5984, 6175/6174, 6656/6655, 12376/12375, 61965/61952 | |||
| {{Mapping| 1889 2994 4386 5303 6535 6990 7721 8024 }} | |||
| +0.0167 | |||
| 0.0226 | |||
| 3.56 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |||
! Periods<br>per 8ve | |||
! Generator* | |||
! Cents* | |||
! Associated<br>ratio* | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 392\1889 | |||
| 249.021 | |||
| {{Monzo| -26 18 1 }} | |||
| [[Monzismic]] | |||
|- | |||
| 1 | |||
| 707\1889 | |||
| 449.127 | |||
| 35/27 | |||
| [[Semidimi]] | |||
|} | |||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct | |||
== Music == | |||
; [[Francium]] | |||
* "Scoop" from ''Scoop'' (2024) – [https://open.spotify.com/track/7stqQkZKeaaonzwH2rnhzH Spotify] | [https://francium223.bandcamp.com/track/scoop Bandcamp] | [https://www.youtube.com/watch?v=387kUkmHIrk YouTube] | |||
* "The Technological Harbinger of Death" from ''Void'' (2025) – [https://open.spotify.com/track/3LDPz84VhVrTDgPLHQXWyJ YouTube] | [https://francium223.bandcamp.com/track/the-technological-harbinger-of-death Bandcamp] | [https://www.youtube.com/watch?v=CEeXQsHpCc8 YouTube] | |||
* "Don't Worry" from ''Don't'' (2025) – [https://open.spotify.com/track/3Kd1Ql1nYOBMhFWi94ljEP Spotify] | [https://francium223.bandcamp.com/track/dont-worry Bandcamp] | [https://www.youtube.com/watch?v=8CCFVZkxIgk YouTube] | |||
[[Category:Monzismic]] | [[Category:Monzismic]] |
Latest revision as of 09:02, 27 August 2025
← 1888edo | 1889edo | 1890edo → |
1889 equal divisions of the octave (abbreviated 1889edo or 1889ed2), also called 1889-tone equal temperament (1889tet) or 1889 equal temperament (1889et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1889 equal parts of about 0.635 ¢ each. Each step represents a frequency ratio of 21/1889, or the 1889th root of 2.
Theory
1889edo is strong in the 23-limit, though 1578, which among other things has a lower 23-limit relative error, rather puts it in the shade. It is distinctly consistent through the 27-odd-limit, but not, unlike 1578, to the 29-odd-limit. Even so, it should be noted that it supplies the optimal patent val for the 7-limit monzismic temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.004 | -0.078 | -0.059 | +0.085 | -0.083 | -0.138 | -0.213 | -0.005 |
Relative (%) | +0.0 | +0.6 | -12.2 | -9.3 | +13.4 | -13.1 | -21.7 | -33.5 | -0.9 | |
Steps (reduced) |
1889 (0) |
2994 (1105) |
4386 (608) |
5303 (1525) |
6535 (868) |
6990 (1323) |
7721 (165) |
8024 (468) |
8545 (989) |
Harmonic | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 | 61 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.174 | -0.303 | +0.218 | -0.264 | -0.136 | +0.242 | -0.027 | -0.199 | -0.103 |
Relative (%) | +27.4 | -47.7 | +34.3 | -41.6 | -21.4 | +38.2 | -4.2 | -31.3 | -16.3 | |
Steps (reduced) |
9177 (1621) |
9358 (1802) |
9841 (396) |
10120 (675) |
10250 (805) |
10493 (1048) |
10820 (1375) |
11112 (1667) |
11203 (1758) |
Subsets and supersets
1889edo is the 290th prime edo.
Intervals
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [2994 -1889⟩ | [⟨1889 2994]] | −0.0012 | 0.0012 | 0.19 |
2.3.5 | [54 -37 2⟩, [-66 -36 53⟩ | [⟨1889 2994 4386]] | +0.0104 | 0.0163 | 2.57 |
2.3.5.7 | 4375/4374, [-1 4 11 -1⟩, [-57 16 10 3⟩ | [⟨1889 2994 4386 5303]] | +0.0131 | 0.0149 | 2.35 |
2.3.5.7.11 | 4375/4374, 151263/151250, 820125/819896, [-28 7 7 -1 1⟩ | [⟨1889 2994 4386 5303 6535]] | +0.0055 | 0.0201 | 3.16 |
2.3.5.7.11.13 | 4225/4224, 4375/4374, 6656/6655, 151263/151250, 4100625/4100096 | [⟨1889 2994 4386 5303 6535 6990]] | +0.0084 | 0.0194 | 3.05 |
2.3.5.7.11.13.17 | 4225/4224, 4375/4374, 6656/6655, 12376/12375, 14875/14872, 194481/194480 | [⟨1889 2994 4386 5303 6535 6990 7721]] | +0.0120 | 0.0200 | 3.15 |
2.3.5.7.11.13.17.19 | 4225/4224, 4375/4374, 5985/5984, 6175/6174, 6656/6655, 12376/12375, 61965/61952 | [⟨1889 2994 4386 5303 6535 6990 7721 8024]] | +0.0167 | 0.0226 | 3.56 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 392\1889 | 249.021 | [-26 18 1⟩ | Monzismic |
1 | 707\1889 | 449.127 | 35/27 | Semidimi |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct