User:Xenwolf/Template:Primes in EDO: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
MediaWiki is obviously not a programming language...
Xenwolf (talk | contribs)
now all deltas but 0 signed
 
(2 intermediate revisions by the same user not shown)
Line 16: Line 16:
  ! rowspan="2" {{!}} Error
  ! rowspan="2" {{!}} Error
  ! absolute ([[cent|¢]])
  ! absolute ([[cent|¢]])
  {{!}} {{#number_format:{{#expr: 1200*(((ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(2)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(2)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}} {{#number_format:{{#expr: 1200*(((ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(3)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(3)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}} {{#number_format:{{#expr: 1200*(((ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(5)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(5)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}} {{#number_format:{{#expr: 1200*(((ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(7)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(7)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}} {{#number_format:{{#expr: 1200*(((ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(11)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(11)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}} {{#number_format:{{#expr: 1200*(((ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(13)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(13)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}} {{#number_format:{{#expr: 1200*(((ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(17)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(17)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}} {{#number_format:{{#expr: 1200*(((ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(19)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(19)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}} {{#number_format:{{#expr: 1200*(((ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(23)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
  {{!}} {{signed|{{#number_format:{{#expr: 1200*(((ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(23)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|1}} }}
  {{!}}-
  {{!}}-
  ! [[Relative error{{!}}relative]] (%)
  ! [[Relative error{{!}}relative]] (%)
  {{!}} {{#number_format:{{#expr: 100*(((ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}} {{#number_format:{{#expr: 100*(((ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}} {{#number_format:{{#expr: 100*(((ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}} {{#number_format:{{#expr: 100*(((ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}} {{#number_format:{{#expr: 100*(((ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}} {{#number_format:{{#expr: 100*(((ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}} {{#number_format:{{#expr: 100*(((ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}} {{#number_format:{{#expr: 100*(((ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}} {{#number_format:{{#expr: 100*(((ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
  {{!}} {{signed|{{#number_format:{{#expr: 100*(((ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}} }}
  {{!}}-
  {{!}}-
  ! colspan="2" {{!}} Degree ([[octave reduction{{!}}reduced]])
  ! colspan="2" {{!}} Degree ([[octave reduction{{!}}reduced]])

Latest revision as of 20:37, 20 October 2020

Approximation of primary intervals in 12 EDO
Prime number 2 3 5 7 11 13 17 19 23
Error absolute (¢) 0.0 -2.0 +13.7 +31.2 +48.7 -40.5 -5.0 +2.5 -28.3
relative (%) 0.0 -2.0 +13.7 +31.2 +48.7 -40.5 -5.0 +2.5 -28.3
Degree (reduced) 12 (0) 19 (7) 28 (4) 34 (10) 42 (6) 44 (8) 49 (1) 51 (3) 54 (6)

Don't use in production!

todo: template that generates a table of prime approximations of the equal temperament characterized by two arguments

  • parameter: number of EDO steps (default 12)