User:Xenwolf/Template:Primes in EDO: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
start template development
 
Xenwolf (talk | contribs)
MediaWiki is obviously not a programming language...
Line 1: Line 1:
* 1st parameter: {{{1|{{{steps|12}}}}}}
{{{!}} class="wikitable center-all"
* 2nd parameter: {{{2|{{{base|2}}}}}} <noinclude>
{{!}}-
{{!}}+ Approximation of primary intervals in {{{1|{{{steps|12}}}}}} EDO
{{!}}-
! colspan="2" {{!}} Prime number
! 2
! 3
! 5
! 7
! 11
! 13
! 17
! 19
! 23
{{!}}-
! rowspan="2" {{!}} Error
! absolute ([[cent|¢]])
{{!}} {{#number_format:{{#expr: 1200*(((ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(2)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}} {{#number_format:{{#expr: 1200*(((ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(3)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}} {{#number_format:{{#expr: 1200*(((ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(5)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}} {{#number_format:{{#expr: 1200*(((ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(7)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}} {{#number_format:{{#expr: 1200*(((ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(11)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}} {{#number_format:{{#expr: 1200*(((ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(13)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}} {{#number_format:{{#expr: 1200*(((ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(17)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}} {{#number_format:{{#expr: 1200*(((ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(19)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}} {{#number_format:{{#expr: 1200*(((ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(23)/ln(2))*{{{1|{{{steps|12}}}}}})/{{{1|{{{steps|12}}}}}}}}|2}}
{{!}}-
! [[Relative error{{!}}relative]] (&#37;)
{{!}} {{#number_format:{{#expr: 100*(((ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}} {{#number_format:{{#expr: 100*(((ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}} {{#number_format:{{#expr: 100*(((ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}} {{#number_format:{{#expr: 100*(((ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}} {{#number_format:{{#expr: 100*(((ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}} {{#number_format:{{#expr: 100*(((ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}} {{#number_format:{{#expr: 100*(((ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}} {{#number_format:{{#expr: 100*(((ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}} {{#number_format:{{#expr: 100*(((ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)-(ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} )}}|1}}
{{!}}-
! colspan="2" {{!}} Degree ([[octave reduction{{!}}reduced]])
{{!}} {{#expr: ((ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(2)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}} {{#expr: ((ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(3)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}} {{#expr: ((ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(5)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}} {{#expr: ((ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(7)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}} {{#expr: ((ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(11)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}} {{#expr: ((ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(13)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}} {{#expr: ((ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(17)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}} {{#expr: ((ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(19)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}} {{#expr: ((ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} round 0)}} ({{#expr: ((ln(23)/ln(2))*{{{1|{{{steps|12}}}}}} round 0) mod {{{1|{{{steps|12}}}}}} }})
{{!}}}
<noinclude>
<big>'''Don't use in production!'''</big>


todo: template that generates a table of prime approximations of the equal temperament characterized by two arguments
todo: template that generates a table of prime approximations of the equal temperament characterized by two arguments


* '''1'''st parameter: number of '''steps''' (default 12)
* parameter: number of EDO '''steps''' (default 12)
* '''2'''nd parameter: '''base''' interval (default 2)


</noinclude>
</noinclude>

Revision as of 20:00, 20 October 2020

Approximation of primary intervals in 12 EDO
Prime number 2 3 5 7 11 13 17 19 23
Error absolute (¢) 0.00 -1.96 13.69 31.17 48.68 -40.53 -4.96 2.49 -28.27
relative (%) 0.0 -2.0 13.7 31.2 48.7 -40.5 -5.0 2.5 -28.3
Degree (reduced) 12 (0) 19 (7) 28 (4) 34 (10) 42 (6) 44 (8) 49 (1) 51 (3) 54 (6)

Don't use in production!

todo: template that generates a table of prime approximations of the equal temperament characterized by two arguments

  • parameter: number of EDO steps (default 12)