User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 8: | Line 8: | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
What follows is a comparison of stretched- and compressed-octave 12edo tunings. | What follows is a comparison of stretched- and compressed-octave 12edo tunings. | ||
; [[WE|12et, 7-limit WE tuning]] | ; [[WE|12et, 7-limit WE tuning]] | ||
* Step size: 99.664{{c}}, octave size: | * Step size: 99.664{{c}}, octave size: 1196.0{{c}} | ||
Compressing the octave of | Compressing the octave of 12edo by 4{{c}} results in much improved primes 5, 7 and 11, but a much worse prime 3. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. [[40ed10]] does this as well. An argument could be made that such tunings [[7-limit|harmonies involving the 7th harmonic]] to regular old 12edo without even needing to add any new notes to the octave. | ||
{{Harmonics in cet|99.664|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning}} | {{Harmonics in cet|99.664|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning}} | ||
{{Harmonics in cet|99.664|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning (continued)}} | {{Harmonics in cet|99.664|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 7-limit WE tuning (continued)}} | ||
; [[zpi|34zpi]] | ; [[zpi|34zpi]] | ||
* Step size: 99.807{{c}}, octave size: | * Step size: 99.807{{c}}, octave size: 1197.7{{c}} | ||
Compressing the octave of 12edo by around | Compressing the octave of 12edo by around 2{{c}} results in improved primes 5 and 7, but a worse prime 3. The tuning 34zpi does this. It might be a good tuning for 5-limit [[meantone]], for composers seeking more pure thirds and sixths than regular 12edo. | ||
{{Harmonics in cet|99.807|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi}} | {{Harmonics in cet|99.807|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi}} | ||
{{Harmonics in cet|99.807|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi (continued)}} | {{Harmonics in cet|99.807|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 34zpi (continued)}} | ||
Line 29: | Line 23: | ||
; [[WE|12et, 5-limit WE tuning]] | ; [[WE|12et, 5-limit WE tuning]] | ||
* Step size: 99.868{{c}}, octave size: NNN{{c}} | * Step size: 99.868{{c}}, octave size: NNN{{c}} | ||
Compressing the octave of | Compressing the octave of 12edo by around a fifth of a [[cent]] results in slightly improved primes 5 and 7, but a slightly prime 3. Its 5-limit WE tuning and 5-limit [[TE]] tuning both do this. It has the same benefits and drawbacks as 34zpi, but both are less intense here compared to 34zpi. | ||
{{Harmonics in cet|99.868|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning}} | {{Harmonics in cet|99.868|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning}} | ||
{{Harmonics in cet|99.868|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning (continued)}} | {{Harmonics in cet|99.868|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12et, 5-limit WE tuning (continued)}} | ||
; 12edo | ; 12edo | ||
* Step size: 100.000{{c}}, octave size: 1200.0{{c}} | * Step size: 100.000{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves | Pure-octaves 12edo performs well on harmonics 2, 3 and 5 but poorly on harmonics 7, 11 and 13 compared to other edos with a similar number of notes per octave. | ||
{{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|12|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 12edo}} | ||
{{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|12|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 12edo (continued)}} | ||
; [[31ed6]] | ; [[31ed6]] | ||
* Step size: 100.063{{c}}, octave size: 1200.8{{c}} | * Step size: 100.063{{c}}, octave size: 1200.8{{c}} | ||
Stretching the octave of 12edo by a little less than 1{{c}} results in improved | Stretching the octave of 12edo by a little less than 1{{c}} results in an improved prime 3, but worse prime 5. The tuning 31ed6 does this. | ||
{{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}} | {{Harmonics in equal|31|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6}} | ||
{{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}} | {{Harmonics in equal|31|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31ed6 (continued)}} | ||
Line 53: | Line 41: | ||
; [[19edt]] | ; [[19edt]] | ||
* Step size: 101.103{{c}}, octave size: 1201.2{{c}} | * Step size: 101.103{{c}}, octave size: 1201.2{{c}} | ||
Stretching the octave of 12edo by a little more than 1{{c}} results in improved | Stretching the octave of 12edo by a little more than 1{{c}} results in an improved prime 3, but worse prime 5. The tuning 19edt does this. | ||
{{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}} | {{Harmonics in equal|19|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt}} | ||
{{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}} | {{Harmonics in equal|19|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 19edt (continued)}} | ||
Line 59: | Line 47: | ||
; [[7edf]] | ; [[7edf]] | ||
* Step size: 100.3{{c}}, octave size: 1203.35{{c}} | * Step size: 100.3{{c}}, octave size: 1203.35{{c}} | ||
Stretching the octave of 12edo by around 3{{c}} results in improved primes | Stretching the octave of 12edo by around 3{{c}} results in improved primes 3 and 13, but much worse primes 5 and 7. This has similar benefits and drawbacks to [[Pythagorean]] tuning. Most modern music probably won't sound very good here because of the off 5th harmonic. The tuning 7edf does this. | ||
{{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}} | {{Harmonics in equal|7|3|2|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf}} | ||
{{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}} | {{Harmonics in equal|7|3|2|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 7edf (continued)}} |
Revision as of 23:31, 21 August 2025
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
What follows is a comparison of stretched- and compressed-octave 12edo tunings.
- Step size: 99.664 ¢, octave size: 1196.0 ¢
Compressing the octave of 12edo by 4 ¢ results in much improved primes 5, 7 and 11, but a much worse prime 3. Its 7-limit WE tuning and 7-limit TE tuning both do this. 40ed10 does this as well. An argument could be made that such tunings harmonies involving the 7th harmonic to regular old 12edo without even needing to add any new notes to the octave.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.0 | -8.3 | -8.1 | +4.3 | -12.4 | +19.8 | -12.1 | -16.7 | +0.2 | +34.6 | -16.4 |
Relative (%) | -4.0 | -8.4 | -8.1 | +4.3 | -12.4 | +19.8 | -12.1 | -16.7 | +0.2 | +34.7 | -16.5 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +44.4 | +15.7 | -4.1 | -16.1 | -21.4 | -20.7 | -14.6 | -3.8 | +11.4 | +30.5 | -46.4 | -20.4 |
Relative (%) | +44.5 | +15.8 | -4.1 | -16.2 | -21.5 | -20.8 | -14.7 | -3.8 | +11.4 | +30.6 | -46.6 | -20.5 | |
Step | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- Step size: 99.807 ¢, octave size: 1197.7 ¢
Compressing the octave of 12edo by around 2 ¢ results in improved primes 5 and 7, but a worse prime 3. The tuning 34zpi does this. It might be a good tuning for 5-limit meantone, for composers seeking more pure thirds and sixths than regular 12edo.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.3 | -5.6 | -4.6 | +8.3 | -7.9 | +24.6 | -6.9 | -11.2 | +6.0 | +40.6 | -10.3 |
Relative (%) | -2.3 | -5.6 | -4.6 | +8.3 | -8.0 | +24.7 | -7.0 | -11.3 | +6.0 | +40.7 | -10.3 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -49.0 | +22.3 | +2.7 | -9.3 | -14.4 | -13.6 | -7.4 | +3.7 | +19.0 | +38.3 | -38.7 | -12.6 |
Relative (%) | -49.1 | +22.3 | +2.7 | -9.3 | -14.4 | -13.6 | -7.4 | +3.7 | +19.0 | +38.3 | -38.8 | -12.6 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- Step size: 99.868 ¢, octave size: NNN ¢
Compressing the octave of 12edo by around a fifth of a cent results in slightly improved primes 5 and 7, but a slightly prime 3. Its 5-limit WE tuning and 5-limit TE tuning both do this. It has the same benefits and drawbacks as 34zpi, but both are less intense here compared to 34zpi.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.6 | -4.5 | -3.2 | +10.0 | -6.0 | +26.7 | -4.8 | -8.9 | +8.4 | +43.1 | -7.6 |
Relative (%) | -1.6 | -4.5 | -3.2 | +10.0 | -6.1 | +26.7 | -4.8 | -8.9 | +8.4 | +43.2 | -7.6 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -46.3 | +25.1 | +5.5 | -6.3 | -11.4 | -10.5 | -4.2 | +6.8 | +22.2 | +41.6 | -35.4 | -9.2 |
Relative (%) | -46.4 | +25.1 | +5.5 | -6.3 | -11.4 | -10.5 | -4.3 | +6.8 | +22.3 | +41.6 | -35.4 | -9.2 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- 12edo
- Step size: 100.000 ¢, octave size: 1200.0 ¢
Pure-octaves 12edo performs well on harmonics 2, 3 and 5 but poorly on harmonics 7, 11 and 13 compared to other edos with a similar number of notes per octave.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Steps (reduced) |
12 (0) |
19 (7) |
24 (0) |
28 (4) |
31 (7) |
34 (10) |
36 (0) |
38 (2) |
40 (4) |
42 (6) |
43 (7) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Steps (reduced) |
44 (8) |
46 (10) |
47 (11) |
48 (0) |
49 (1) |
50 (2) |
51 (3) |
52 (4) |
53 (5) |
54 (6) |
54 (6) |
55 (7) |
- Step size: 100.063 ¢, octave size: 1200.8 ¢
Stretching the octave of 12edo by a little less than 1 ¢ results in an improved prime 3, but worse prime 5. The tuning 31ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -37.8 | +34.1 | +14.7 | +3.0 | -1.9 | -0.8 | +5.7 | +17.0 | +32.6 | -48.0 | -24.9 | +1.5 |
Relative (%) | -37.7 | +34.1 | +14.7 | +3.0 | -1.9 | -0.8 | +5.7 | +17.0 | +32.5 | -47.9 | -24.9 | +1.5 | |
Steps (reduced) |
44 (13) |
46 (15) |
47 (16) |
48 (17) |
49 (18) |
50 (19) |
51 (20) |
52 (21) |
53 (22) |
53 (22) |
54 (23) |
55 (24) |
- Step size: 101.103 ¢, octave size: 1201.2 ¢
Stretching the octave of 12edo by a little more than 1 ¢ results in an improved prime 3, but worse prime 5. The tuning 19edt does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -36.0 | +35.9 | +16.6 | +4.9 | +0.1 | +1.2 | +7.7 | +19.0 | +34.7 | -45.9 | -22.7 | +3.7 |
Relative (%) | -36.0 | +35.9 | +16.6 | +4.9 | +0.1 | +1.2 | +7.7 | +19.0 | +34.6 | -45.8 | -22.7 | +3.7 | |
Steps (reduced) |
44 (6) |
46 (8) |
47 (9) |
48 (10) |
49 (11) |
50 (12) |
51 (13) |
52 (14) |
53 (15) |
53 (15) |
54 (16) |
55 (17) |
- Step size: 100.3 ¢, octave size: 1203.35 ¢
Stretching the octave of 12edo by around 3 ¢ results in improved primes 3 and 13, but much worse primes 5 and 7. This has similar benefits and drawbacks to Pythagorean tuning. Most modern music probably won't sound very good here because of the off 5th harmonic. The tuning 7edf does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -28.2 | +44.0 | +24.9 | +13.4 | +8.7 | +10.1 | +16.7 | +28.2 | +44.0 | -36.5 | -13.2 | +13.4 |
Relative (%) | -28.2 | +43.9 | +24.8 | +13.4 | +8.7 | +10.0 | +16.7 | +28.1 | +43.9 | -36.4 | -13.2 | +13.4 | |
Steps (reduced) |
44 (2) |
46 (4) |
47 (5) |
48 (6) |
49 (0) |
50 (1) |
51 (2) |
52 (3) |
53 (4) |
53 (4) |
54 (5) |
55 (6) |