User:BudjarnLambeth/100zpi: Difference between revisions
mNo edit summary |
|||
Line 1: | Line 1: | ||
{{Editable user page}} | {{Editable user page}} | ||
'''100zpi''', the 100th [[zeta peak index]], is a [[Octave stretching|stretched-octaves]] version of [[26edo]]. It can be thought of as ''' | '''100zpi''', the 100th [[zeta peak index]], is a [[Octave stretching|stretched-octaves]] version of [[26edo]]. It can be thought of as '''26ed1202.975c''' or as '''46.268cet'''. | ||
It has a step size of 46.268 [[cent]]s, and the [[octave]] ([[2/1]]) is tuned slightly impurely to 1202.975 cents. | It has a step size of 46.268 [[cent]]s, and the [[octave]] ([[2/1]]) is tuned slightly impurely to 1202.975 cents. |
Latest revision as of 06:05, 16 August 2025
![]() |
This user page is editable by any wiki editor.
As a general rule, most users expect their user space to be edited only by themselves, except for minor edits (e.g. maintenance), undoing obviously harmful edits such as vandalism or disruptive editing, and user talk pages. However, by including this message box, the author of this user page has indicated that this page is open to contributions from other users (e.g. content-related edits). |
100zpi, the 100th zeta peak index, is a stretched-octaves version of 26edo. It can be thought of as 26ed1202.975c or as 46.268cet.
It has a step size of 46.268 cents, and the octave (2/1) is tuned slightly impurely to 1202.975 cents.
26edo tunes most simple harmonics slightly flat by roughly the same amount, so 100zpi is one possible way of correcting for this.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | |
---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.0 | -5.0 | -10.2 | +8.7 | +12.8 | +1.2 |
Relative (%) | +6.4 | -10.7 | -22.1 | +18.9 | +27.7 | +2.6 | |
Step | 26 | 41 | 60 | 73 | 90 | 96 |
Harmonic | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.5 | -8.0 | -14.9 | +0.2 | -22.7 |
Relative (%) | -1.2 | -17.4 | -32.2 | +0.4 | -49.1 | |
Step | 106 | 110 | 117 | 126 | 128 |
For primes up to 31:
100zpi approximates these with less than 6 cents error (<13% relative error):
- 2, 3, 13, 17, 29
...these with 6-12 cents error (13-26% relative error):
- 5, 7, 19
...these with 12-18 cents error (26-39% relative error):
- 11, 23
...and these with more than 18 cents error (>39% relative error):
- 31
This makes it usable as a full 31-limit tuning, or as a more accurate no-11s 19-limit tuning.
Scales
Any scales from 26edo should also be useable here.
Instruments
All instruments listed under 26edo#Instruments also work for 100zpi.