Rodan: Difference between revisions
m removed needless underscore |
m Markup |
||
(76 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox Regtemp | |||
| Title = Rodan | |||
| Subgroups = 2.3.5.7, 2.3.5.7.11 | |||
| Comma basis = [[245/243]], [[1029/1024]] (7-limit); <br> [[245/243]], [[385/384]], [[441/440]] (11-limit) | |||
| Edo join 1 = 41 | Edo join 2 = 46 | |||
| Generator = 8/7 | Generator tuning = 234.4 | Optimization method = CWE | |||
| MOS scales = [[1L 4s]], [[5L 1s]], [[5L 6s]], …, [[5L 36s]], [[41L 5s]] | |||
| Mapping = 1; 3 17 -1 -13 | |||
| Pergen = (P8, P5/3) | |||
| Odd limit 1 = 9 | Mistuning 1 = 5.05 | Complexity 1 = 41 | |||
| Odd limit 2 = (2.3.5.7.11) 21 | Mistuning 2 = 5.34 | Complexity 2 = 87 | |||
}} | |||
'''Rodan''' is one of the notable [[extension]]s of the [[slendric]] [[regular temperament|temperament]], which divides [[3/2]] into three equal intervals representing [[8/7]] ([[tempering out]] the gamelisma, [[1029/1024]]), reaching the full [[7-limit]] such that 17 of these [[generators]] [[stacking|stack]] to reach the interval class of the [[5/1|5th harmonic]]. It tempers out [[245/243]], making it a [[sensamagic clan|sensamagic temperament]], so that [[5/3]] is divided into two intervals of [[9/7]]; and it tempers out [[5120/5103]], making it also a [[hemifamity temperaments|hemifamity temperament]], so that [[9/8]] stacks thrice into [[10/7]]. | |||
Unlike [[mothra]], which flattens the fifth to a [[meantone]] fifth, the fifth of rodan is slightly sharp of just, ranging from that of [[41edo]] to that of [[46edo]] (with [[87edo]] being an essentially optimal tuning). As a result, the [[256/243|diatonic minor second]] is compressed, and the interval known as the [[quark]], which represents [[49/48]], [[64/63]], and in rodan also [[81/80]], is even smaller than it is in tunings of slendric with a nearly just fifth. This entails that the [[mos scale]]s of rodan [[cluster MOS|cluster]] even more strongly around [[5edo]], although this can be thought of as an advantage in that it simplifies the conceptualization of rodan's inventory of intervals (see [[#As a detemperament of 5et]]). Rather than directly using mos scales, which are either extremely imbalanced or overly large, an approach to rodan may involve picking and choosing which intervals from each [[pentatonic]] category to keep in the scale. | |||
= | As can be elucidated by [[S-expression]]s, rodan is very much an "opposed counterpart" to mothra: the basic equivalence of slendric tempers S7 (49/48) = S8 (64/63), and mothra proceeds to equate it to S6 ([[36/35]]) as well; meanwhile, rodan extends the equivalence in the opposite direction to add S9 (81/80) to it, making it one of the five [[rank-2 temperament]]s definable by equating three adjacent square superparticulars. | ||
{| class="wikitable" | As for further extensions, slendric temperaments often find [[55/32]] at 4 generator steps (tempering out [[385/384]] and [[441/440]]), giving new interpretations to the quark as [[55/54]] and [[56/55]]; 55/32 is particularly accurate in the tuning subrange appropriate for rodan, and so [[11/1|harmonic 11]] can easily be found at -13 generator steps. It is also worth mentioning that this equates the diatonic major third to [[14/11]], tempering out [[896/891]]. A [[2.3.7.11 subgroup]] version of rodan, known as ''radon'', uses exclusively this mapping and forgoes interpreting the 5th harmonic. | ||
Toward the [[13-limit]], the diatonic minor third ([[32/27]]) in hemifamity temperaments represents the square root of [[7/5]], for which [[13/11]] is a good interpretation (tempering out [[352/351]] and [[847/845]]), which turns out to place [[13/1|harmonic 13]] at -22 generator steps. Finally, [[17/13]] is a good interpretation of the slendric subfourth comprising two generators, otherwise equated to [[21/16]] (tempering out [[273/272]] and [[833/832]]), and this places [[17/1|harmonic 17]] at -20 generator steps. Thus proceeds the canonical extension of rodan out to the [[17-limit]]. | |||
See [[Gamelismic clan #Rodan]] for more information. | |||
== Interval chain == | |||
When speaking of interval categories, as an extension of slendric it is possible to use a system [[Slendric#Interval categories|designed for slendric]], where notes are inflected from the diatonic [[chain of fifths]] by means of the prefixes "super" and "sub", such that three of these inflections stack to a diatonic minor second. These "super" and "sub" prefixes are equivalent to "up" and "down" in [[#Notation|the notation]] system, but can disambiguate from "up" and "down" symbols from [[ups and downs notation]] in the context of larger rodan edos that map this comma to multiple edosteps. | |||
In the following table, odd harmonics and subharmonics 1–21 are in '''bold'''. | |||
{| class="wikitable sortable center-1 center-2 right-3" | |||
|- | |||
! rowspan="2" | # !! rowspan="2" | Extended <br> diatonic <br> interval !! rowspan="2" | Cents* !! colspan="2" | Approximate ratios | |||
|- | |- | ||
! | | ! rowspan="1" | Ratios of the 11-limit !! colspan="1" | Ratios of the 17-limit | ||
! | | |||
|- | |- | ||
| | | | 0 | ||
| | | P1 | ||
| 0.00 | |||
| '''1/1''' | |||
| | |||
|- | |- | ||
| | | | 1 | ||
| | | SM2 | ||
| 234.46 | |||
| '''8/7''' | |||
| 39/34 | |||
|- | |- | ||
| | | | 2 | ||
| | | s4 | ||
| 468.92 | |||
| '''21/16''', 64/49 | |||
| 17/13 | |||
|- | |- | ||
| | | | 3 | ||
| | | P5 | ||
| 703.38 | |||
| '''3/2''' | |||
| | |||
|- | |- | ||
| 4 | |||
| | | | SM6 | ||
| 937.84 | |||
| 12/7, 55/32 | |||
| | |||
|- | |- | ||
| | | | 5 | ||
| | | | s8 | ||
| 1172.30 | |||
| 55/28, 63/32, 96/49, 108/55, 160/81 | |||
| 51/26 | |||
|- | |- | ||
| | | | 6 | ||
| | | M2 | ||
| 206.76 | |||
| '''9/8''' | |||
| 44/39 | |||
|- | |- | ||
| 7 | |||
| | | | SM3 | ||
| 441.22 | |||
| 9/7, 35/27 | |||
| 22/17 | |||
|- | |- | ||
| | | | 8 | ||
| | | s5 | ||
| 675.68 | |||
| 40/27, 49/33, 72/49 | |||
| | |||
|- | |- | ||
| | | | 9 | ||
| | | | M6 | ||
| 910.14 | |||
| 27/16, 56/33 | |||
| 22/13 | |||
|- | |- | ||
| | 18/ | | 10 | ||
| | | SM7 | ||
| 1144.59 | |||
| 27/14, 35/18, 64/33 | |||
| 33/17 | |||
|- | |- | ||
| | | | 11 | ||
| | | sM2 | ||
| 179.05 | |||
| 10/9 | |||
| | |||
|- | |- | ||
| | | | 12 | ||
| | | M3 | ||
| 413.51 | |||
| 14/11, 81/64 | |||
| 33/26 | |||
|- | |- | ||
| | | | 13 | ||
| | | SA4 | ||
| 647.97 | |||
| '''16/11''', 35/24 | |||
| | |||
|- | |- | ||
| | | | 14 | ||
| | | sM6 | ||
| 882.43 | |||
| 5/3 | |||
| | |||
|- | |- | ||
| 15 | |||
| | | | M7 | ||
| 1116.89 | |||
| 21/11, 40/21 | |||
| 98/51 | |||
|- | |- | ||
| | | | 16 | ||
| | | | SA1 | ||
| 151.35 | |||
| 12/11, 35/32 | |||
| 56/51 | |||
|- | |- | ||
| | 5/4 | | 17 | ||
| | | sM3 | ||
| 385.81 | |||
| '''5/4''' | |||
| 49/39, 64/51 | |||
|- | |- | ||
| | | | 18 | ||
| | | A4 | ||
| 620.27 | |||
| 10/7 | |||
| 49/34, 56/39 | |||
|- | |- | ||
| | | | 19 | ||
| | | SA5 | ||
| 854.73 | |||
| 18/11 | |||
| 28/17, 64/39 | |||
|- | |- | ||
| | | | 20 | ||
| | | sM7 | ||
| 1089.19 | |||
| '''15/8''' | |||
| '''32/17''', 49/26 | |||
|- | |- | ||
| | | | 21 | ||
| | | A1 | ||
| 123.65 | |||
| 15/14 | |||
| 14/13 | |||
|- | |- | ||
| | | | 22 | ||
| | | | SA2 | ||
| 358.11 | |||
| 27/22, 60/49 | |||
| '''16/13''', 21/17 | |||
|- | |- | ||
| | | | 23 | ||
| | | sA4 | ||
| 592.57 | |||
| 45/32 | |||
| 24/17 | |||
|- | |- | ||
| | | | 24 | ||
| | | A5 | ||
| 827.03 | |||
| 45/28 | |||
| 21/13 | |||
|- | |- | ||
| | | | 25 | ||
| | | | SA6 | ||
| 1061.49 | |||
| 50/27, 90/49 | |||
| 24/13 | |||
|- | |- | ||
| | | | 26 | ||
| | | sA1 | ||
| 95.95 | |||
| 35/33 | |||
| 18/17 | |||
|- | |- | ||
| | | | 27 | ||
| | | A2 | ||
| 330.41 | |||
| 40/33 | |||
| | |||
|- | |- | ||
| | | | 28 | ||
| | | SA3 | ||
| 564.87 | |||
| 25/18 | |||
| 18/13 | |||
|- | |- | ||
| | | | 29 | ||
| | | sA5 | ||
| 799.33 | |||
| 35/22, 100/63 | |||
| 27/17 | |||
|- | |- | ||
| | | | 30 | ||
| | | | A6 | ||
| 1033.79 | |||
| 20/11 | |||
| | |||
|- | |||
| 31 | |||
| SA7 | |||
| 68.25 | |||
| 25/24 | |||
| 27/26 | |||
|} | |} | ||
<nowiki/>* In 11-limit CWE tuning, octave reduced | |||
[[File: Rodan 5et Detempering.png|thumb|Rodan as a 46-tone 5et detempering]] | |||
=== As a detemperament of 5et === | |||
Rodan is naturally a [[detemperament]] of the [[5edo|5 equal temperament]]. The diagram on the right shows a 46-tone detempered scale, with a generator range of -22 to +23. 46 is the largest number of tones for a mos where intervals in the 5 categories do not overlap. Each category is divided into eight or nine qualities separated by 5 generator steps, which represent the syntonic comma. | |||
Notice also the little interval between the largest of a category and the smallest of the next, which represents the differences between 16/15 and 14/13, between 11/9 and 16/13, between 7/5 and 45/32, between 13/8 and 18/11, and between 13/7 and 15/8. It spans 41 generator steps, so it vanishes in 41edo, but is tuned to the same size as the quark/syntonic comma in 46edo. 87edo tunes it to one half the size of the syntonic comma, which may be seen as a good compromise. | |||
== Chords == | |||
11-limit rodan contains [[essentially tempered chord]]s of the commas 245/243, 385/384, 441/440, and 896/891. A list of 11-odd-limit [[dyadic chord|dyadically consonant chords]], both essentially tempered and essentially just, can be found at [[Chords of rodan]]. | |||
== Scales == | |||
* [[Radon5]] | |||
* [[Radon11]] | |||
* [[Radon16]] | |||
* [[Rodan26opt]] | |||
* [[Rodan31opt]] | |||
* [[Rodan41opt]] | |||
== Notation == | |||
A notation for rodan is listed in the notation guide for rank-2 pergens under [[pergen]] #8, {{nowrap|(P8, P5/3)}}. The generator is an upmajor second. The [[enharmonic unisons in ups and downs notation|enharmonic unison]] is a triple-down minor second. Thus three ups equals a diatonic semitone, and three generators equals a perfect fifth. In rodan in particular, ^1 equals ~81/80 and ~64/63, and ^^1 equals ~33/32 and ~[[1053/1024]]. | |||
{| class="wikitable center-1 center-3" | |||
|+ style="font-size: 105%;" | Rodan nomenclature<br>for selected intervals | |||
|- | |||
! Ratio | |||
! Nominal | |||
! Example | |||
|- | |||
| 3/2 | |||
| Perfect fifth | |||
| C−G | |||
|- | |||
| 5/4 | |||
| Down major third | |||
| C−vE | |||
|- | |||
| 7/4 | |||
| Down minor seventh | |||
| C−vB♭ | |||
|- | |||
| 11/8 | |||
| Double-up fourth | |||
| C−^^F | |||
|- | |||
| 13/8 | |||
| Double-up minor sixth | |||
| C−^^A♭ | |||
|} | |||
Rodan's notation has much in common with that for 41edo and 46edo, since both edos map a minor second to three edosteps. It also resembles the notation for [[cassandra]]. All four notations notate the slendric tetrad (1–8/7–21/16–3/2) on C as C–^D–vF–G, and all four notations notate 5/4, 7/4, 11/8, and 13/8 as in the table above. But the notations diverge for other intervals, such as 11/10. | |||
== Tunings == | |||
=== Tuning spectrum === | |||
{{see also|Slendric #Tuning spectrum}} | |||
{| class="wikitable center-all left-4 left-5" | |||
|- | |||
! EDO<br>generator | |||
! [[Eigenmonzo|Unchanged interval<br>(eigenmonzo)]] | |||
! Generator (¢) | |||
! Comments | |||
|- | |||
| | |||
| [[8/7]] | |||
| 231.1741 | |||
| Untempered tuning | |||
|- | |||
| | |||
| [[17/13]] | |||
| 232.2139 | |||
| | |||
|- | |||
| '''[[36edo|7\36]]''' | |||
| | |||
| '''233.3333''' | |||
| 36cfg val, '''lower bound of 7- and 9-odd-limit diamond monotone''' | |||
|- | |||
| | |||
| [[3/2]] | |||
| 233.9850 | |||
| 1/3-comma slendric | |||
|- | |||
| '''[[41edo|8\41]]''' | |||
| | |||
| '''234.1463''' | |||
| '''Lower bound of 11- through 17-odd-limit diamond monotone''' | |||
|- | |||
| | |||
| [[22/17]] | |||
| 234.1946 | |||
| | |||
|- | |||
| | |||
| [[15/14]] | |||
| 234.2592 | |||
| | |||
|- | |||
| | |||
| [[10/7]] | |||
| 234.3049 | |||
| 7- and 9-odd-limit minimax | |||
|- | |||
| [[169edo|33\169]] | |||
| | |||
| 234.3195 | |||
| 169fgg val | |||
|- | |||
| | |||
| [[18/11]] | |||
| 234.3470 | |||
| 11-odd-limit minimax | |||
|- | |||
| | |||
| [[40/21]] | |||
| 234.3689 | |||
| | |||
|- | |||
| [[128edo|25\128]] | |||
| | |||
| 234.3750 | |||
| 128g val | |||
|- | |||
| | |||
| [[18/13]] | |||
| 234.4065 | |||
| 13- and 15-odd-limit minimax | |||
|- | |||
| | |||
| [[55/32]] | |||
| 234.4079 | |||
| As SM6 | |||
|- | |||
| | |||
| [[15/8]] | |||
| 234.4134 | |||
| | |||
|- | |||
| | |||
| [[12/11]] | |||
| 234.4148 | |||
| | |||
|- | |||
| [[215edo|42\215]] | |||
| | |||
| 234.4186 | |||
| 215dgg val | |||
|- | |||
| | |||
| [[15/11]] | |||
| 234.4531 | |||
| | |||
|- | |||
| | |||
| [[24/13]] | |||
| 234.4571 | |||
| | |||
|- | |||
| | |||
| [[15/13]] | |||
| 234.4700 | |||
| | |||
|- | |||
| [[87edo|17\87]] | |||
| | |||
| 234.4828 | |||
| | |||
|- | |||
| | |||
| [[5/4]] | |||
| 234.4890 | |||
| 5-odd-limit minimax | |||
|- | |||
| | |||
| [[20/11]] | |||
| 234.4999 | |||
| | |||
|- | |||
| | |||
| [[20/13]] | |||
| 234.5073 | |||
| | |||
|- | |||
| | |||
| [[16/11]] | |||
| 234.5140 | |||
| | |||
|- | |||
| | |||
| [[16/13]] | |||
| 234.5215 | |||
| | |||
|- | |||
| | |||
| [[22/13]] | |||
| 234.5323 | |||
| | |||
|- | |||
| [[220edo|43\220]] | |||
| | |||
| 234.5455 | |||
| 220dg val | |||
|- | |||
| | |||
| [[63/32]] | |||
| 234.5472 | |||
| 2/5-comma slendric | |||
|- | |||
| | |||
| [[18/17]] | |||
| 234.5752 | |||
| 17-odd-limit minimax | |||
|- | |||
| | |||
| [[30/17]] | |||
| 234.5828 | |||
| | |||
|- | |||
| [[133edo|26\133]] | |||
| | |||
| 234.5865 | |||
| | |||
|- | |||
| | |||
| [[5/3]] | |||
| 234.5971 | |||
| | |||
|- | |||
| | |||
| [[21/11]] | |||
| 234.6309 | |||
| | |||
|- | |||
| | |||
| [[20/17]] | |||
| 234.6313 | |||
| | |||
|- | |||
| [[179edo|35\179]] | |||
| | |||
| 234.6369 | |||
| 179d val | |||
|- | |||
| | |||
| [[24/17]] | |||
| 234.6522 | |||
| | |||
|- | |||
| | |||
| [[14/13]] | |||
| 234.6809 | |||
| | |||
|- | |||
| | |||
| [[32/17]] | |||
| 234.7522 | |||
| | |||
|- | |||
| | |||
| [[10/9]] | |||
| 234.7640 | |||
| | |||
|- | |||
| '''[[46edo|9\46]]''' | |||
| | |||
| '''234.7826''' | |||
| '''Upper bound of 11- through 17-odd-limit diamond monotone''' | |||
|- | |||
| | |||
| [[14/11]] | |||
| 234.7923 | |||
| | |||
|- | |||
| | |||
| [[28/17]] | |||
| 234.9406 | |||
| | |||
|- | |||
| [[51edo|10\51]] | |||
| | |||
| 235.2941 | |||
| 51cf val | |||
|- | |||
| | |||
| [[21/16]] | |||
| 235.3905 | |||
| 1/2-comma slendric | |||
|- | |||
| '''[[5edo|1\5]]''' | |||
| | |||
| '''240.0000''' | |||
| 5f val, '''upper bound of 5- through 9-odd-limit diamond monotone''' | |||
|} | |||
<nowiki>*</nowiki> Besides the octave | |||
== Music == | |||
; [[Gene Ward Smith]] | |||
* ''Pianodactyl'' (archived 2010) – [https://soundcloud.com/genewardsmith/pianodactyl SoundCloud] | [http://www.archive.org/details/Pianodactyl detail] | [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] – in Rodan[26], 87edo tuning | |||
[[Category: | [[Category:Rodan| ]] <!-- main article --> | ||
[[Category:Rank-2 temperaments]] | |||
[[Category:Gamelismic clan]] | |||
[[Category:Sensamagic clan]] | |||
[[Category:Hemifamity temperaments]] |