Rodan: Difference between revisions

mNo edit summary
Fredg999 (talk | contribs)
m Markup
 
(6 intermediate revisions by 2 users not shown)
Line 9: Line 9:
| Pergen = (P8, P5/3)
| Pergen = (P8, P5/3)
| Odd limit 1 = 9 | Mistuning 1 = 5.05 | Complexity 1 = 41
| Odd limit 1 = 9 | Mistuning 1 = 5.05 | Complexity 1 = 41
| Odd limit 2 = (2.3.5.7.11) 21 | Mistuning 2 = ? | Complexity 2 = 87
| Odd limit 2 = (2.3.5.7.11) 21 | Mistuning 2 = 5.34 | Complexity 2 = 87
}}
}}


Line 16: Line 16:
Unlike [[mothra]], which flattens the fifth to a [[meantone]] fifth, the fifth of rodan is slightly sharp of just, ranging from that of [[41edo]] to that of [[46edo]] (with [[87edo]] being an essentially optimal tuning). As a result, the [[256/243|diatonic minor second]] is compressed, and the interval known as the [[quark]], which represents [[49/48]], [[64/63]], and in rodan also [[81/80]], is even smaller than it is in tunings of slendric with a nearly just fifth. This entails that the [[mos scale]]s of rodan [[cluster MOS|cluster]] even more strongly around [[5edo]], although this can be thought of as an advantage in that it simplifies the conceptualization of rodan's inventory of intervals (see [[#As a detemperament of 5et]]). Rather than directly using mos scales, which are either extremely imbalanced or overly large, an approach to rodan may involve picking and choosing which intervals from each [[pentatonic]] category to keep in the scale.
Unlike [[mothra]], which flattens the fifth to a [[meantone]] fifth, the fifth of rodan is slightly sharp of just, ranging from that of [[41edo]] to that of [[46edo]] (with [[87edo]] being an essentially optimal tuning). As a result, the [[256/243|diatonic minor second]] is compressed, and the interval known as the [[quark]], which represents [[49/48]], [[64/63]], and in rodan also [[81/80]], is even smaller than it is in tunings of slendric with a nearly just fifth. This entails that the [[mos scale]]s of rodan [[cluster MOS|cluster]] even more strongly around [[5edo]], although this can be thought of as an advantage in that it simplifies the conceptualization of rodan's inventory of intervals (see [[#As a detemperament of 5et]]). Rather than directly using mos scales, which are either extremely imbalanced or overly large, an approach to rodan may involve picking and choosing which intervals from each [[pentatonic]] category to keep in the scale.


As can be elucidated by [[S-expression]]s, rodan is very much a "counterpart" to mothra: the basic equivalence of slendric tempers S7 (49/48) = S8 (64/63), and mothra proceeds to equate it to S6 ([[36/35]]) as well; meanwhile, rodan extends the equivalence in the opposite direction to add S9 (81/80) to it, making it one of the five [[rank-2 temperament]]s definable by equating three adjacent square superparticulars.
As can be elucidated by [[S-expression]]s, rodan is very much an "opposed counterpart" to mothra: the basic equivalence of slendric tempers S7 (49/48) = S8 (64/63), and mothra proceeds to equate it to S6 ([[36/35]]) as well; meanwhile, rodan extends the equivalence in the opposite direction to add S9 (81/80) to it, making it one of the five [[rank-2 temperament]]s definable by equating three adjacent square superparticulars.


As for further extensions, slendric temperaments often find [[55/32]] at 4 generator steps (tempering out [[385/384]] and [[441/440]]), giving new interpretations to the quark as [[55/54]] and [[56/55]]; 55/32 is particularly accurate in the tuning subrange appropriate for rodan, and so [[11/1|harmonic 11]] can easily be found at -13 generator steps. It is also worth mentioning that this equates the diatonic major third to [[14/11]], tempering out [[896/891]]. A [[2.3.7.11 subgroup]] version of rodan, known as ''radon'', uses exclusively this mapping and forgoes interpreting the 5th harmonic.
As for further extensions, slendric temperaments often find [[55/32]] at 4 generator steps (tempering out [[385/384]] and [[441/440]]), giving new interpretations to the quark as [[55/54]] and [[56/55]]; 55/32 is particularly accurate in the tuning subrange appropriate for rodan, and so [[11/1|harmonic 11]] can easily be found at -13 generator steps. It is also worth mentioning that this equates the diatonic major third to [[14/11]], tempering out [[896/891]]. A [[2.3.7.11 subgroup]] version of rodan, known as ''radon'', uses exclusively this mapping and forgoes interpreting the 5th harmonic.
Line 135: Line 135:
| 151.35
| 151.35
| 12/11, 35/32
| 12/11, 35/32
|  
| 56/51
|-
|-
| 17
| 17
Line 189: Line 189:
| 1061.49
| 1061.49
| 50/27, 90/49
| 50/27, 90/49
| 24/13, 63/34
| 24/13
|-
|-
| 26
| 26
Line 237: Line 237:


== Chords ==
== Chords ==
11-limit rodan contains [[essentially tempered chords]] of the commas 245/243, 385/384, 441/440, and 896/891. A list of 11-odd-limit [[dyadic chord|dyadically consonant chords]], both essentially tempered and essentially just, can be found at [[Chords of rodan]].
11-limit rodan contains [[essentially tempered chord]]s of the commas 245/243, 385/384, 441/440, and 896/891. A list of 11-odd-limit [[dyadic chord|dyadically consonant chords]], both essentially tempered and essentially just, can be found at [[Chords of rodan]].


== Scales ==
== Scales ==
Line 282: Line 282:
== Tunings ==
== Tunings ==
=== Tuning spectrum ===
=== Tuning spectrum ===
{{see also|Slendric #Tuning spectrum}}
{| class="wikitable center-all left-4 left-5"
{| class="wikitable center-all left-4 left-5"
|-
|-
Line 527: Line 529:
[[Category:Rodan| ]] <!-- main article -->
[[Category:Rodan| ]] <!-- main article -->
[[Category:Rank-2 temperaments]]
[[Category:Rank-2 temperaments]]
[[Category:Gamelismic clan]]
[[Category:Sensamagic clan]]
[[Category:Sensamagic clan]]
[[Category:Gamelismic clan]]
[[Category:Hemifamity temperaments]]