Chords of huygens: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Lériendil moved page Meantone/Chords to Chords of huygens
Undo revision 200414 by Lériendil (talk)
Tags: Removed redirect Undo
Line 1: Line 1:
#REDIRECT [[Chords of huygens]]
Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Meantone_family#Septimal meantone-Unidecimal meantone aka Huygens|meantone temperament]]. By "meantone" is meant one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 99/98, and 126/125. Typing the chords requires consideration of the fact that meantone conflates 9/8 and 10/9 and also 9/7 and 14/11. If a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.
 
(For the inversions, there has been no attempt to note any equivalencies. Keep in mind that 10/9 can be thought of as 9/8, 16/9 as 9/5, 9/7 as 14/11, and vice versa.)
 
Chords requiring tempering only by 81/80 are labeled didymic, by 99/98 mothwellsmic, by 126/125 starling, by 176/175 valinorsmic, by 225/224 marvel, and by 441/440 werckismic. Chords which require any two of 81/80, 99/98 or 441/440 are labeled euterpe, by and two of 81/80, 126/125, or 225/224 erato, and by any two of 99/98, 176/175, or 225/224 minerva. A chord requiring any three independent commas from those discussed above is labeled meantone.
 
The transversal is in generator order. This is useful because it tells how common the chords are: For instance, a chord that appears on the sixth generation will appear exactly once in meantone[7], six times in meantone[12], and 13 times in meantone[19].
 
The "as generated" column takes the intervals that were generated and places them in size order. The 1st and 2nd inversion (and so on) columns show the inversions of those generated tones. Note that this gives different results than you might be used to: For instance, the minor chord ({{nowrap|{{dash|1/1, 6/5, 3/2}}}}, or 10:12:15) is the second inversion of the generated {{nowrap|{{dash|0, 3, 4}}}} chord.
 
Though we're used to thinking of 10:12:15 as the definitive "minor chord", with all inversions coming from that, there is nothing definitive about calling these lists below "chord" or "inversion". That's just the way the generators came out.
 
Meantone has MOS of size 5, 7, 12, 19, 31, 43 and 74. While one might suppose meantone has been thoroughly explored, this really isn't true in the 7-limit, and it can hardly be said to have been explored at all in the 11-limit. The 19 note MOS would seem to be a good place to start such explorations.
 
The '''bolded''' inversions are named using ups and downs, to avoid aug, dim, double-aug and double-dim intervals. One up is −12 fifths, a descending Pythagorean comma. Thus {{nowrap|^1 {{=}} d2}} and {{nowrap|^C {{=}} Dbb}}. One up represents ~64/63, ~45/44, and ~40/39. If ''c'' is the difference between 700{{cent}} and the size of the generator in cents, then one up is equal to 12''c''.
 
{| class="wikitable"
|+ style="font-size: 105%;" | 11-limit meantone's genchain
|-
! Genspan
! 0
! 1
! 2
! 3
! 4
! 5
! 6
! 7
! 8
! 9
! 10
! 11
! 12
! 13
! 14
! 15
! 16
! 17
! 18
|-
! Cents (31edo)
| 0
| 697
| 194
| 890
| 387
| 1084
| 581
| 77
| 774
| 271
| 968
| 465
| 1161
| 658
| 155
| 852
| 348
| 1045
| 542
|-
! Ratio
| 1/1
| 3/2
| 9/8<br />10/9
| 5/3
| 5/4
| 15/8
| 45/32<br />7/5
| 21/20
| 63/40<br />14/9
| 7/6
| 7/4
| 21/16<br />13/10
| 35/18
| 13/9
| 11/10<br />13/12
| 13/8
| 11/9
| 11/6
| 11/8
|-
! Interval
| '''P1'''
| P5
| M2
| M6
| M3
| M7
| A4<br />vd5
| A1<br />vm2
| A5<br />vm6
| A2<br />vm3
| A6<br />vm7
| A3<br />v4
| A7<br />v8
| AA4<br />v5
| AA1<br />vM2
| AA5<br />vM6
| AA2<br />vM3
| AA6<br />vM7
| AA3<br />vA4
|-
! Note<br />(in C)
| '''C'''
| G
| D
| A
| E
| B
| F#
| C#
| G#<br />vAb
| D#<br />vEb
| A#<br />vBb
| E#<br />vF
| B#<br />vC
| Fx<br />vG
| Cx<br />vD
| Gx<br />vA
| Dx<br />vE
| Ax<br />vB
| Ex<br />vF#
|}
'''''TODO: complete the tables'''''
 
== Triads ==
{| class="wikitable"
|-
! #
! Chord
! Transversal
! Type
! As generated
! 1st inversion
! 2nd inversion
! Name
|-
| 1
| {{dash|0, 1, 2}}
| {{dash|1, 3/2, 9/8}}
| ambitonal
| {{dash|'''1/1, 9/8, 3/2'''}}
| {{dash|1/1, 4/3, 16/9}}
| {{dash|'''1/1, 4/3, 3/2'''}}
| C2 <u>or</u> C4
|-
| 2
| {{dash|0, 1, 3}}
| {{dash|1, 3/2, 5/3}}
| otonal
| {{dash|1/1, 3/2, 5/3}}
| {{dash|1/1, 10/9, 4/3}}
| {{dash|'''1/1, 6/5, 9/5'''}}
| Cm7no5
|-
| 3
| {{dash|0, 2, 3}}
| {{dash|1, 10/9, 5/3}}
| utonal
| {{dash|1/1, 10/9, 5/3}}
| {{dash|'''1/1, 3/2, 9/5'''}}
| {{dash|1/1, 6/5, 4/3}}
| C7no3
|-
| 4
| {{dash|0, 1, 4}}
| {{dash|1, 3/2, 5/4}}
| otonal
| {{dash|'''1/1, 5/4, 3/2'''}}
| {{dash|1/1, 6/5, 8/5}}
| {{dash|1/1, 4/3, 5/3}}
| C
|-
| 5
| {{dash|0, 2, 4}}
| {{dash|1, 9/8, 5/4}}
| otonal
| {{dash|'''1/1, 9/8, 5/4'''}}
| {{dash|1/1, 10/9, 16/9}}
| {{dash|1/1, 8/5, 9/5}}
| Cadd9no5
|-
| 6
| {{dash|0, 3, 4}}
| {{dash|1, 5/3, 5/4}}
| utonal
| {{dash|1/1, 5/4, 5/3}}
| {{dash|1/1, 4/3, 8/5}}
| {{dash|'''1/1, 6/5, 3/2'''}}
| Cm
|-
| 7
| {{dash|0, 2, 6}}
| {{dash|1, 9/8, 7/5}}
| marvel
| {{dash|1/1, 9/8, 7/5}}
| {{dash|'''1/1, 5/4, 16/9'''}}
| {{dash|1/1, 10/7, 8/5}}
| C7no5
|-
| 8
| {{dash|0, 3, 6}}
| {{dash|1, 5/3, 7/5}}
| starling
| {{dash|1/1, 7/5, 5/3}}
| {{dash|'''1/1, 6/5, 10/7'''}}
| {{dash|1/1, 6/5, 5/3}}
| Cdim
|-
| 9
| {{dash|0, 4, 6}}
| {{dash|1, 5/4, 7/5}}
| marvel
| {{dash|'''1/1, 5/4, 7/5'''}}
| {{dash|1/1, 9/8, 8/5}}
| {{dash|1/1, 10/7, 16/9}}
| C(vb5)
|-
| 10
| {{dash|0, 2, 8}}
| {{dash|1, 10/9, 14/9}}
| otonal
| {{dash|'''1/1, 10/9, 14/9'''}}
| {{dash|1/1, 7/5, 9/5}}
| {{dash|'''1/1, 9/7, 10/7'''}}
| C2(#5) <u>or</u> C^(b5)
|-
| 11
| {{dash|0, 4, 8}}
| {{dash|1, 5/4, 14/9}}
| marvel
| {{dash|'''1/1, 5/4, 14/9'''}}
| {{dash|1/1, 5/4, 8/5}}
| {{dash|1/1, 9/7, 8/5}}
| Caug
|-
| 12
| {{dash|0, 6, 8}}
| {{dash|1, 7/5, 14/9}}
| utonal
| {{dash|1/1, 7/5, 14/9}}
| {{dash|'''1/1, 10/9, 10/7'''}}
| {{dash|'''1/1, 9/7, 9/5'''}}
| C2(b5) <u>or</u> C^,7no5
|-
| 13
| {{dash|0, 1, 9}}
| {{dash|1, 3/2, 7/6}}
| otonal
| {{dash|'''1/1, 7/6, 3/2'''}}
| {{dash|1/1, 9/7, 12/7}}
| {{dash|1/1, 4/3, 14/9}}
| Cvm
|-
| 14
| {{dash|0, 3, 9}}
| {{dash|1, 5/3, 7/6}}
| otonal
| {{dash|1/1, 7/6, 5/3}}
| {{dash|'''1/1, 10/7, 12/7'''}}
| {{dash|'''1/1, 6/5, 7/5'''}}
| Cdim7no3 <u>or</u> Cdim(v5)
|-
| 15
| {{dash|0, 6, 9}}
| {{dash|1, 7/5, 7/6}}
| utonal
| {{dash|'''1/1, 7/6, 7/5'''}}
| {{dash|'''1/1, 6/5, 12/7'''}}
| {{dash|1/1, 10/7, 5/3}}
| Cvdim(v5) <u>or</u> Cdim7no5
|-
| 16
| {{dash|0, 8, 9}}
| {{dash|1, 14/9, 7/6}}
| utonal
| {{dash|1/1, 7/6, 14/9}}
| {{dash|1/1, 4/3, 12/7}}
| {{dash|'''1/1, 9/7, 3/2'''}}
| C^
|-
| 17
| {{dash|0, 1, 10}}
| {{dash|1, 3/2, 7/4}}
| otonal
| {{dash|'''1/1, 3/2, 7/4'''}}
| {{dash|1/1, 7/6, 4/3}}
| {{dash|1/1, 8/7, 12/7}}
| Cv7no3
|-
| 18
| {{dash|0, 2, 10}}
| {{dash|1, 9/8, 7/4}}
| otonal
| {{dash|'''1/1, 9/8, 7/4'''}}
| {{dash|1/1, 14/9, 16/9}}
| {{dash|1/1, 8/7, 9/7}}
| Cv9no35
|-
| 19
| {{dash|0, 4, 10}}
| {{dash|1, 5/4, 7/4}}
| otonal
| {{dash|'''1/1, 5/4, 7/4'''}}
| {{dash|1/1, 7/5, 8/5}}
| {{dash|1/1, 8/7, 10/7}}
| C,v7no5
|-
| 20
| {{dash|0, 6, 10}}
| {{dash|1, 7/5, 7/4}}
| utonal
| {{dash|1/1, 7/5, 7/4}}
| {{dash|'''1/1, 5/4, 10/7'''}}
| {{dash|1/1, 8/7, 8/5}}
| C(b5)
|-
| 21
| {{dash|0, 8, 10}}
| {{dash|1, 14/9, 7/4}}
| utonal
| {{dash|1/1, 14/9, 7/4}}
| {{dash|'''1/1, 9/8, 9/7'''}}
| {{dash|1/1, 8/7, 16/9}}
| C^,9no5
|-
| 22
| {{dash|0, 9, 10}}
| {{dash|1, 7/6, 7/4}}
| utonal
| {{dash|'''1/1, 7/6, 7/4'''}}
| {{dash|1/1, 3/2, 12/7}}
| {{dash|1/1, 8/7, 4/3}}
| Cvm7no5
|-
| 23
| {{dash|0, 4, 14}}
| {{dash|1, 5/4, 11/10}}
| valinorsmic
| {{dash|1/1, 11/10, 5/4}}
| {{dash|1/1, 8/7, 20/11}}
| {{dash|1/1, 8/5, 7/4}}
|
|-
| 24
| {{dash|0, 6, 14}}
| {{dash|1, 7/5, 11/10}}
| otonal
| {{dash|1/1, 11/10, 7/5}}
| {{dash|1/1, 14/11, 20/11}}
| {{dash|1/1, 10/7, 11/7}}
|
|-
| 25
| {{dash|0, 8, 14}}
| {{dash|1, 11/7, 11/10}}
| utonal
| {{dash|1/1, 11/10, 11/7}}
| {{dash|1/1, 10/7, 20/11}}
| {{dash|1/1, 14/11, 7/5}}
|
|-
| 26
| {{dash|0, 10, 14}}
| {{dash|1, 7/4, 11/10}}
| valinorsmic
| {{dash|1/1, 11/10, 7/4}}
| {{dash|1/1, 8/5, 20/11}}
| {{dash|1/1, 8/7, 5/4}}
|
|-
| 27
| {{dash|0, 2, 16}}
| {{dash|1, 10/9, 11/9}}
| otonal
| {{dash|1/1, 10/9, 11/9}}
| {{dash|1/1, 11/10, 9/5}}
| {{dash|1/1, 18/11, 20/11}}
|
|-
| 28
| {{dash|0, 6, 16}}
| {{dash|1, 7/5, 11/9}}
| werckismic
| {{dash|1/1, 11/9, 7/5}}
| {{dash|1/1, 8/7, 18/11}}
| {{dash|1/1, 10/7, 7/4}}
|
|-
| 29
| {{dash|0, 8, 16}}
| {{dash|1, 14/9, 11/9}}
| otonal
| {{dash|1/1, 11/9, 14/9}}
| {{dash|1/1, 14/11, 18/11}}
| {{dash|1/1, 9/7, 11/7}}
|
|-
| 30
| {{dash|0, 10, 16}}
| {{dash|1, 7/4, 11/9}}
| werckismic
| {{dash|1/1, 11/9, 7/4}}
| {{dash|1/1, 10/7, 18/11}}
| {{dash|1/1, 8/7, 7/5}}
|
|-
| 31
| {{dash|0, 14, 16}}
| {{dash|1, 11/10, 11/9}}
| utonal
| {{dash|1/1, 11/10, 11/9}}
| {{dash|1/1, 10/9, 20/11}}
| {{dash|1/1, 18/11, 9/5}}
|
|-
| 32
| {{dash|0, 1, 17}}
| {{dash|1, 3/2, 11/6}}
| otonal
| {{dash|1/1, 3/2, 11/6}}
| {{dash|1/1, 11/9, 4/3}}
| {{dash|1/1, 12/11, 18/11}}
|
|-
| 33
| {{dash|0, 3, 17}}
| {{dash|1, 5/3, 11/6}}
| otonal
| {{dash|1/1, 5/3, 11/6}}
| {{dash|1/1, 11/10, 6/5}}
| {{dash|1/1, 12/11, 20/11}}
|
|-
| 34
| {{dash|0, 8, 17}}
| {{dash|1, 11/7, 11/6}}
| utonal
| {{dash|1/1, 11/7, 11/6}}
| {{dash|1/1, 7/6, 14/11}}
| {{dash|1/1, 12/11, 12/7}}
|
|-
| 35
| {{dash|0, 9, 17}}
| {{dash|1, 7/6, 11/6}}
| otonal
| {{dash|1/1, 7/6, 11/6}}
| {{dash|1/1, 11/7, 12/7}}
| {{dash|1/1, 12/11, 14/11}}
|
|-
| 36
| {{dash|0, 14, 17}}
| {{dash|1, 11/10, 11/6}}
| utonal
| {{dash|1/1, 11/10, 11/6}}
| {{dash|1/1, 5/3, 20/11}}
| {{dash|1/1, 12/11, 6/5}}
|
|-
| 37
| {{dash|0, 16, 17}}
| {{dash|1, 11/9, 11/6}}
| utonal
| {{dash|1/1, 11/9, 11/6}}
| {{dash|1/1, 3/2, 18/11}}
| {{dash|1/1, 12/11, 4/3}}
|
|-
| 38
| {{dash|0, 1, 18}}
| {{dash|1, 3/2, 11/8}}
| otonal
| {{dash|1/1, 11/8, 3/2}}
| {{dash|1/1, 12/11, 16/11}}
| {{dash|1/1, 4/3, 11/6}}
|
|-
| 39
| {{dash|0, 2, 18}}
| {{dash|1, 9/8, 11/8}}
| otonal
| {{dash|1/1, 9/8, 11/8}}
| {{dash|1/1, 11/9, 16/9}}
| {{dash|1/1, 16/11, 18/11}}
|
|-
| 40
| {{dash|0, 4, 18}}
| {{dash|1, 5/4, 11/8}}
| otonal
| {{dash|1/1, 5/4, 11/8}}
| {{dash|1/1, 11/10, 8/5}}
| {{dash|1/1, 16/11, 20/11}}
|
|-
| 41
| {{dash|0, 8, 18}}
| {{dash|1, 11/7, 11/8}}
| utonal
| {{dash|1/1, 11/8, 11/7}}
| {{dash|1/1, 8/7, 16/11}}
| {{dash|1/1, 14/11, 7/4}}
|
|-
| 42
| {{dash|0, 9, 18}}
| {{dash|1, 7/6, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8}}
| {{dash|1/1, 7/6, 12/7}}
| {{dash|1/1, 16/11, 12/7}}
|
|-
| 43
| {{dash|0, 10, 18}}
| {{dash|1, 7/4, 11/8}}
| otonal
| {{dash|1/1, 11/8, 7/4}}
| {{dash|1/1, 14/11, 16/11}}
| {{dash|1/1, 8/7, 11/7}}
|
|-
| 44
| {{dash|0, 14, 18}}
| {{dash|1, 11/10, 11/8}}
| utonal
| {{dash|1/1, 11/10, 11/8}}
| {{dash|1/1, 5/4, 20/11}}
| {{dash|1/1, 16/11, 8/5}}
|
|-
| 45
| {{dash|0, 16, 18}}
| {{dash|1, 11/9, 11/8}}
| utonal
| {{dash|1/1, 11/9, 11/8}}
| {{dash|1/1, 9/8, 18/11}}
| {{dash|1/1, 16/11, 16/9}}
|
|-
| 46
| {{dash|0, 17, 18}}
| {{dash|1, 11/6, 11/8}}
| utonal
| {{dash|1/1, 11/8, 11/6}}
| {{dash|1/1, 4/3, 16/11}}
| {{dash|1/1, 12/11, 3/2}}
|
|}
 
== Tetrads ==
{| class="wikitable"
|-
! #
! Chord
! Transversal
! Type
! As generated
! 1st inversion
! 2nd inversion
! 3rd inversion
! Name
|-
| 1
| {{dash|0, 1, 2, 3}}
| {{dash|1, 3/2, 9/8, 5/3}}
| didymic
| {{dash|1/1, 9/8, 3/2, 5/3}}
| {{dash|'''1/1, 4/3, 3/2, 16/9'''}}
| {{dash|'''1/1, 9/8, 4/3, 3/2'''}}
| {{dash|1/1, 6/5, 4/3, 9/5}}
| C7sus4 <u>or</u> C4,9
|-
| 2
| {{dash|0, 1, 2, 4}}
| {{dash|1, 3/2, 9/8, 5/4}}
| otonal
| {{dash|'''1/1, 9/8, 5/4, 3/2'''}}
| {{dash|1/1, 10/9, 4/3, 16/9}}
| {{dash|1/1, 6/5, 8/5, 9/5}}
| {{dash|1/1, 4/3, 3/2, 5/3}}
| Cadd9
|-
| 3
| {{dash|0, 1, 3, 4}}
| {{dash|1, 3/2, 5/3, 5/4}}
| ambitonal
| {{dash|'''1/1, 5/4, 3/2, 5/3'''}}
| {{dash|1/1, 6/5, 4/3, 8/5}}
| {{dash|1/1, 9/8, 4/3, 5/3}}
| {{dash|'''1/1, 6/5, 3/2, 9/5'''}}
| C6 <u>or</u> Cm7
|-
| 4
| {{dash|0, 2, 3, 4}}
| {{dash|1, 10/9, 5/3, 5/4}}
| utonal
| {{dash|1/1, 10/9, 5/4, 5/3}}
| {{dash|'''1/1, 9/8, 3/2, 9/5'''}}
| {{dash|1/1, 4/3, 8/5, 16/9}}
| {{dash|1/1, 6/5, 4/3, 3/2}}
| C9no3
|-
| 5
| {{dash|0, 2, 3, 6}}
| {{dash|1, 9/8, 5/3, 7/5}}
| erato
| {{dash|1/1, 9/8, 7/5, 5/3}}
| {{dash|'''1/1, 5/4, 3/2, 16/9'''}}
| {{dash|1/1, 6/5, 10/7, 8/5}}
| {{dash|1/1, 6/5, 4/3, 5/3}}
| C7
|-
| 6
| {{dash|0, 2, 4, 6}}
| {{dash|1, 9/8, 5/4, 7/5}}
| erato
| {{dash|1/1, 9/8, 5/4, 7/5}}
| {{dash|'''1/1, 10/9, 5/4, 16/9'''}}
| {{dash|1/1, 9/8, 8/5, 9/5}}
| {{dash|1/1, 10/7, 8/5, 9/5}}
| C9no5
|-
| 7
| {{dash|0, 3, 4, 6}}
| {{dash|1, 5/3, 5/4, 7/5}}
| erato
| {{dash|1/1, 5/4, 7/5, 5/3}}
| {{dash|1/1, 9/8, 4/3, 8/5}}
| {{dash|'''1/1, 6/5, 10/7, 16/9'''}}
| {{dash|'''1/1, 6/5, 3/2, 5/3'''}}
| Cm7(b5) <u>or</u> Cm6
|-
| 8
| {{dash|0, 2, 4, 8}}
| {{dash|1, 9/8, 5/4, 14/9}}
| erato
| {{dash|'''1/1, 9/8, 5/4, 14/9'''}}
| {{dash|1/1, 10/9, 7/5, 16/9}}
| {{dash|1/1, 5/4, 8/5, 9/5}}
| {{dash|1/1, 9/7, 10/7, 8/5}}
| Caug,9
|-
| 9
| {{dash|0, 2, 6, 8}}
| {{dash|1, 9/8, 7/5, 14/9}}
| erato
| {{dash|1/1, 9/8, 7/5, 14/9}}
| {{dash|'''1/1, 5/4, 7/5, 16/9'''}}
| {{dash|1/1, 10/9, 10/7, 8/5}}
| {{dash|1/1, 9/7, 10/7, 9/5}}
| C7(vb5)
|-
| 10
| {{dash|0, 4, 6, 8}}
| {{dash|1, 5/4, 7/5, 14/9}}
| erato
| {{dash|1/1, 5/4, 7/5, 14/9}}
| {{dash|1/1, 9/8, 5/4, 8/5}}
| {{dash|'''1/1, 10/9, 10/7, 16/9'''}}
| {{dash|1/1, 9/7, 8/5, 9/5}}
| C9(b5)no3
|-
| 11
| {{dash|0, 1, 3, 9}}
| {{dash|1, 3/2, 5/3, 7/6}}
| otonal
| {{dash|1/1, 7/6, 3/2, 5/3}}
| {{dash|1/1, 9/7, 10/7, 12/7}}
| {{dash|1/1, 10/9, 4/3, 14/9}}
| {{dash|'''1/1, 6/5, 7/5, 9/5'''}}
| Cm7(vb5)
|-
| 12
| {{dash|0, 3, 6, 9}}
| {{dash|1, 5/3, 7/5, 7/6}}
| starling
| {{dash|1/1, 7/6, 7/5, 5/3}}
| {{dash|'''1/1, 6/5, 10/7, 12/7'''}}
| {{dash|1/1, 6/5, 10/7, 5/3}}
| {{dash|1/1, 6/5, 7/5, 5/3}}
| Cdim7
|-
| 13
| {{dash|0, 6, 8, 9}}
| {{dash|1, 7/5, 14/9, 7/6}}
| utonal
| {{dash|1/1, 7/6, 7/5, 14/9}}
| {{dash|1/1, 6/5, 4/3, 12/7}}
| {{dash|1/1, 10/9, 10/7, 5/3}}
| {{dash|'''1/1, 9/7, 3/2, 9/5'''}}
| C^,7
|-
| 14
| {{dash|0, 1, 2, 10}}
| {{dash|1, 3/2, 9/8, 7/4}}
| otonal
| {{dash|'''1/1, 9/8, 3/2, 7/4'''}}
| {{dash|1/1, 4/3, 14/9, 16/9}}
| {{dash|'''1/1, 7/6, 4/3, 3/2'''}}
| {{dash|1/1, 8/7, 9/7, 12/7}}
| Cv7no3 <u>or</u> Cvm,11
|-
| 15
| {{dash|0, 1, 4, 10}}
| {{dash|1, 3/2, 5/4, 7/4}}
| otonal
| {{dash|'''1/1, 5/4, 3/2, 7/4'''}}
| {{dash|1/1, 6/5, 7/5, 8/5}}
| {{dash|1/1, 7/6, 4/3, 5/3}}
| {{dash|1/1, 8/7, 10/7, 12/7}}
| C,v7
|-
| 16
| {{dash|0, 2, 4, 10}}
| {{dash|1, 9/8, 5/4, 7/4}}
| otonal
| {{dash|'''1/1, 9/8, 5/4, 7/4'''}}
| {{dash|1/1, 10/9, 14/9, 16/9}}
| {{dash|1/1, 7/5, 8/5, 9/5}}
| {{dash|1/1, 8/7, 9/7, 10/7}}
| C9(v7)no5
|-
| 17
| {{dash|0, 2, 6, 10}}
| {{dash|1, 9/8, 7/5, 7/4}}
| marvel
| {{dash|1/1, 9/8, 7/5, 7/4}}
| {{dash|'''1/1, 5/4, 14/9, 16/9'''}}
| {{dash|1/1, 5/4, 10/7, 8/5}}
| {{dash|1/1, 8/7, 9/7, 8/5}}
| C7(#5) <u>or</u> Caug7
|-
| 18
| {{dash|0, 4, 6, 10}}
| {{dash|1, 5/4, 7/5, 7/4}}
| marvel
| {{dash|1/1, 5/4, 7/5, 7/4}}
| {{dash|1/1, 9/8, 7/5, 8/5}}
| {{dash|'''1/1, 5/4, 10/7, 16/9'''}}
| {{dash|1/1, 8/7, 10/7, 8/5}}
| C7(b5)
|-
| 19
| {{dash|0, 2, 8, 10}}
| {{dash|1, 9/8, 14/9, 7/4}}
| didymic
| {{dash|1/1, 9/8, 14/9, 7/4}}
| {{dash|1/1, 7/5, 14/9, 16/9}}
| {{dash|1/1, 9/8, 9/7, 10/7}}
| {{dash|1/1, 8/7, 9/7, 16/9}}
|
|-
| 20
| {{dash|0, 4, 8, 10}}
| {{dash|1, 5/4, 14/9, 7/4}}
| marvel
| {{dash|1/1, 5/4, 14/9, 7/4}}
| {{dash|1/1, 5/4, 7/5, 8/5}}
| {{dash|1/1, 9/8, 9/7, 8/5}}
| {{dash|1/1, 8/7, 10/7, 16/9}}
|
|-
| 21
| {{dash|0, 6, 8, 10}}
| {{dash|1, 7/5, 14/9, 7/4}}
| utonal
| {{dash|1/1, 7/5, 14/9, 7/4}}
| {{dash|'''1/1, 10/9, 5/4, 10/7'''}}
| {{dash|1/1, 9/8, 9/7, 9/5}}
| {{dash|1/1, 8/7, 8/5, 16/9}}
| C,9(b5)
|-
| 22
| {{dash|0, 1, 9, 10}}
| {{dash|1, 3/2, 7/6, 7/4}}
| ambitonal
| {{dash|'''1/1, 7/6, 3/2, 7/4'''}}
| {{dash|'''1/1, 9/7, 3/2, 12/7'''}}
| {{dash|1/1, 7/6, 4/3, 14/9}}
| {{dash|1/1, 8/7, 4/3, 12/7}}
| Cvm7 <u>or</u> C^6
|-
| 23
| {{dash|0, 6, 9, 10}}
| {{dash|1, 7/5, 7/6, 7/4}}
| utonal
| {{dash|'''1/1, 7/6, 7/5, 7/4'''}}
| {{dash|'''1/1, 6/5, 3/2, 12/7'''}}
| {{dash|'''1/1, 5/4, 10/7, 5/3'''}}
| {{dash|1/1, 8/7, 4/3, 8/5}}
| Cvm7(vb5) <u>or</u> Cm^6 <u>or</u> C6(b5)
|-
| 24
| {{dash|0, 8, 9, 10}}
| {{dash|1, 14/9, 7/6, 7/4}}
| utonal
| {{dash|'''1/1, 7/6, 14/9, 7/4'''}}
| {{dash|'''1/1, 4/3, 3/2, 12/7'''}}
| {{dash|'''1/1, 9/8, 9/7, 3/2'''}}
| {{dash|1/1, 8/7, 4/3, 16/9}}
| Cvm7(#5) <u>or</u> C4^6 <u>or</u> C^,9
|-
| 25
| {{dash|0, 4, 6, 14}}
| {{dash|1, 5/4, 7/5, 11/10}}
| minerva
| {{dash|1/1, 11/10, 5/4, 7/5}}
| {{dash|1/1, 9/8, 14/11, 20/11}}
| {{dash|1/1, 9/8, 8/5, 7/4}}
| {{dash|1/1, 10/7, 11/7, 16/9}}
|
|-
| 26
| {{dash|0, 4, 8, 14}}
| {{dash|1, 5/4, 14/9, 11/10}}
| minerva
| {{dash|1/1, 11/10, 5/4, 14/9}}
| {{dash|1/1, 9/8, 10/7, 20/11}}
| {{dash|1/1, 5/4, 8/5, 7/4}}
| {{dash|1/1, 9/7, 7/5, 8/5}}
|
|-
| 27
| {{dash|0, 6, 8, 14}}
| {{dash|1, 7/5, 14/9, 11/10}}
| euterpe
| {{dash|1/1, 11/10, 7/5, 14/9}}
| {{dash|1/1, 14/11, 10/7, 20/11}}
| {{dash|1/1, 10/9, 10/7, 11/7}}
| {{dash|'''1/1, 9/7, 7/5, 9/5'''}}
| C^,7(vb5)
|-
| 28
| {{dash|0, 4, 10, 14}}
| {{dash|1, 5/4, 7/4, 11/10}}
| valinorsmic
| {{dash|1/1, 11/10, 5/4, 7/4}}
| {{dash|1/1, 25/22, 8/5, 20/11}}
| {{dash|1/1, 7/5, 8/5, 7/4}}
| {{dash|'''1/1, 8/7, 5/4, 10/7'''}}
| C,^9(b5)
|-
| 29
| {{dash|0, 6, 10, 14}}
| {{dash|1, 7/5, 7/4, 11/10}}
| minerva
| {{dash|1/1, 11/10, 7/5, 7/4}}
| {{dash|1/1, 14/11, 8/5, 20/11}}
| {{dash|1/1, 5/4, 10/7, 11/7}}
| {{dash|1/1, 8/7, 5/4, 8/5}}
|
|-
| 30
| {{dash|0, 8, 10, 14}}
| {{dash|1, 14/9, 7/4, 11/10}}
| minerva
| {{dash|1/1, 11/10, 14/9, 7/4}}
| {{dash|1/1, 7/5, 8/5, 20/11}}
| {{dash|1/1, 9/8, 9/7, 7/5}}
| {{dash|1/1, 8/7, 5/4, 16/9}}
|
|-
| 31
| {{dash|0, 2, 6, 16}}
| {{dash|1, 9/8, 7/5, 11/9}}
| meantone
| {{dash|1/1, 9/8, 11/9, 7/5}}
| {{dash|1/1, 11/10, 5/4, 16/9}}
| {{dash|1/1, 8/7, 18/11, 20/11}}
| {{dash|1/1, 10/7, 8/5, 7/4}}
|
|-
| 32
| {{dash|0, 2, 8, 16}}
| {{dash|1, 10/9, 14/9, 11/9}}
| otonal
| {{dash|1/1, 10/9, 11/9, 14/9}}
| {{dash|1/1, 11/10, 7/5, 9/5}}
| {{dash|1/1, 14/11, 18/11, 20/11}}
| {{dash|1/1, 9/7, 10/7, 11/7}}
|
|-
| 33
| {{dash|0, 6, 8, 16}}
| {{dash|1, 7/5, 14/9, 11/9}}
| euterpe
| {{dash|1/1, 11/9, 7/5, 14/9}}
| {{dash|1/1, 8/7, 14/11, 18/11}}
| {{dash|1/1, 9/8, 10/7, 7/4}}
| {{dash|1/1, 9/7, 11/7, 9/5}}
|
|-
| 34
| {{dash|0, 2, 10, 16}}
| {{dash|1, 9/8, 7/4, 11/9}}
| euterpe
| {{dash|1/1, 9/8, 11/9, 7/4}}
| {{dash|1/1, 11/10, 14/9, 16/9}}
| {{dash|1/1, 10/7, 18/11, 20/11}}
| {{dash|1/1, 8/7, 9/7, 7/5}}
|
|-
| 35
| {{dash|0, 6, 10, 16}}
| {{dash|1, 7/5, 7/4, 11/9}}
| werckismic
| {{dash|1/1, 11/9, 7/5, 7/4}}
| {{dash|1/1, 8/7, 10/7, 18/11}}
| {{dash|1/1, 5/4, 10/7, 7/4}}
| {{dash|1/1, 8/7, 7/5, 8/5}}
|
|-
| 36
| {{dash|0, 8, 10, 16}}
| {{dash|1, 14/9, 7/4, 11/9}}
| euterpe
| {{dash|1/1, 11/9, 14/9, 7/4}}
| {{dash|1/1, 14/11, 10/7, 18/11}}
| {{dash|1/1, 9/8, 9/7, 11/7}}
| {{dash|1/1, 8/7, 7/5, 16/9}}
|
|-
| 37
| {{dash|0, 6, 14, 16}}
| {{dash|1, 7/5, 11/10, 11/9}}
| euterpe
| {{dash|1/1, 11/10, 11/9, 7/5}}
| {{dash|1/1, 10/9, 14/11, 20/11}}
| {{dash|1/1, 8/7, 18/11, 9/5}}
| {{dash|1/1, 10/7, 11/7, 7/4}}
|
|-
| 38
| {{dash|0, 8, 14, 16}}
| {{dash|1, 11/7, 11/10, 11/9}}
| utonal
| {{dash|1/1, 11/10, 11/9, 11/7}}
| {{dash|1/1, 10/9, 10/7, 20/11}}
| {{dash|1/1, 9/7, 18/11, 9/5}}
| {{dash|1/1, 14/11, 7/5, 14/9}}
|
|-
| 39
| {{dash|0, 10, 14, 16}}
| {{dash|1, 7/4, 11/10, 11/9}}
| meantone
| {{dash|1/1, 11/10, 11/9, 7/4}}
| {{dash|1/1, 10/9, 8/5, 20/11}}
| {{dash|1/1, 10/7, 18/11, 9/5}}
| {{dash|1/1, 8/7, 5/4, 7/5}}
|
|-
| 40
| {{dash|0, 1, 3, 17}}
| {{dash|1, 3/2, 5/3, 11/6}}
| otonal
| {{dash|1/1, 3/2, 5/3, 11/6}}
| {{dash|1/1, 10/9, 11/9, 4/3}}
| {{dash|1/1, 11/10, 6/5, 9/5}}
| {{dash|1/1, 12/11, 18/11, 20/11}}
|
|-
| 41
| {{dash|0, 1, 9, 17}}
| {{dash|1, 3/2, 7/6, 11/6}}
| otonal
| {{dash|1/1, 7/6, 3/2, 11/6}}
| {{dash|1/1, 9/7, 11/7, 12/7}}
| {{dash|1/1, 11/9, 4/3, 14/9}}
| {{dash|1/1, 12/11, 14/11, 18/11}}
|
|-
| 42
| {{dash|0, 3, 9, 17}}
| {{dash|1, 5/3, 7/6, 11/6}}
| otonal
| {{dash|1/1, 7/6, 5/3, 11/6}}
| {{dash|1/1, 10/7, 11/7, 12/7}}
| {{dash|1/1, 11/10, 6/5, 7/5}}
| {{dash|1/1, 12/11, 14/11, 20/11}}
|
|-
| 43
| {{dash|0, 8, 9, 17}}
| {{dash|1, 14/9, 7/6, 11/6}}
| mothwellsmic
| {{dash|1/1, 7/6, 14/9, 11/6}}
| {{dash|1/1, 4/3, 11/7, 12/7}}
| {{dash|1/1, 7/6, 9/7, 3/2}}
| {{dash|1/1, 12/11, 14/11, 12/7}}
|
|-
| 44
| {{dash|0, 8, 14, 17}}
| {{dash|1, 11/7, 11/10, 11/6}}
| utonal
| {{dash|1/1, 11/10, 11/7, 11/6}}
| {{dash|1/1, 10/7, 5/3, 20/11}}
| {{dash|1/1, 7/6, 14/11, 7/5}}
| {{dash|1/1, 12/11, 6/5, 12/7}}
|
|-
| 45
| {{dash|0, 8, 16, 17}}
| {{dash|1, 11/7, 11/9, 11/6}}
| utonal
| {{dash|1/1, 11/9, 11/7, 11/6}}
| {{dash|1/1, 9/7, 3/2, 18/11}}
| {{dash|1/1, 7/6, 14/11, 14/9}}
| {{dash|1/1, 12/11, 4/3, 12/7}}
|
|-
| 46
| {{dash|0, 14, 16, 17}}
| {{dash|1, 11/10, 11/9, 11/6}}
| utonal
| {{dash|1/1, 11/10, 11/9, 11/6}}
| {{dash|1/1, 10/9, 5/3, 20/11}}
| {{dash|1/1, 3/2, 18/11, 9/5}}
| {{dash|1/1, 12/11, 6/5, 4/3}}
|
|-
| 47
| {{dash|0, 1, 2, 18}}
| {{dash|1, 3/2, 9/8, 11/8}}
| otonal
| {{dash|1/1, 9/8, 11/8, 3/2}}
| {{dash|1/1, 11/9, 4/3, 16/9}}
| {{dash|1/1, 12/11, 16/11, 18/11}}
| {{dash|1/1, 4/3, 3/2, 11/6}}
|
|-
| 48
| {{dash|0, 1, 4, 18}}
| {{dash|1, 3/2, 5/4, 11/8}}
| otonal
| {{dash|1/1, 5/4, 11/8, 3/2}}
| {{dash|1/1, 11/10, 6/5, 8/5}}
| {{dash|1/1, 12/11, 16/11, 20/11}}
| {{dash|1/1, 4/3, 5/3, 11/6}}
|
|-
| 49
| {{dash|0, 2, 4, 18}}
| {{dash|1, 9/8, 5/4, 11/8}}
| otonal
| {{dash|1/1, 9/8, 5/4, 11/8}}
| {{dash|1/1, 10/9, 11/9, 16/9}}
| {{dash|1/1, 11/10, 8/5, 9/5}}
| {{dash|1/1, 16/11, 18/11, 20/11}}
|
|-
| 50
| {{dash|0, 2, 8, 18}}
| {{dash|1, 9/8, 14/9, 11/8}}
| euterpe
| {{dash|1/1, 9/8, 11/8, 14/9}}
| {{dash|1/1, 11/9, 7/5, 16/9}}
| {{dash|1/1, 8/7, 16/11, 18/11}}
| {{dash|1/1, 9/7, 10/7, 7/4}}
|
|-
| 51
| {{dash|0, 4, 8, 18}}
| {{dash|1, 5/4, 14/9, 11/8}}
| minerva
| {{dash|1/1, 5/4, 11/8, 14/9}}
| {{dash|1/1, 11/10, 5/4, 8/5}}
| {{dash|1/1, 8/7, 16/11, 20/11}}
| {{dash|1/1, 9/7, 8/5, 7/4}}
|
|-
| 52
| {{dash|0, 1, 9, 18}}
| {{dash|1, 3/2, 7/6, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8, 3/2}}
| {{dash|1/1, 7/6, 9/7, 12/7}}
| {{dash|1/1, 12/11, 16/11, 12/7}}
| {{dash|1/1, 4/3, 14/9, 11/6}}
|
|-
| 53
| {{dash|0, 8, 9, 18}}
| {{dash|1, 14/9, 7/6, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8, 14/9}}
| {{dash|1/1, 7/6, 4/3, 12/7}}
| {{dash|1/1, 8/7, 16/11, 12/7}}
| {{dash|1/1, 9/7, 3/2, 7/4}}
|
|-
| 54
| {{dash|0, 1, 10, 18}}
| {{dash|1, 3/2, 7/4, 11/8}}
| otonal
| {{dash|1/1, 11/8, 3/2, 7/4}}
| {{dash|1/1, 12/11, 14/11, 16/11}}
| {{dash|1/1, 7/6, 4/3, 11/6}}
| {{dash|1/1, 8/7, 11/7, 12/7}}
|
|-
| 55
| {{dash|0, 2, 10, 18}}
| {{dash|1, 9/8, 7/4, 11/8}}
| otonal
| {{dash|1/1, 9/8, 11/8, 7/4}}
| {{dash|1/1, 11/9, 14/9, 16/9}}
| {{dash|1/1, 14/11, 16/11, 18/11}}
| {{dash|1/1, 8/7, 9/7, 11/7}}
|
|-
| 56
| {{dash|0, 4, 10, 18}}
| {{dash|1, 5/4, 7/4, 11/8}}
| otonal
| {{dash|1/1, 5/4, 11/8, 7/4}}
| {{dash|1/1, 11/10, 7/5, 8/5}}
| {{dash|1/1, 14/11, 16/11, 20/11}}
| {{dash|1/1, 8/7, 10/7, 11/7}}
|
|-
| 57
| {{dash|0, 8, 10, 18}}
| {{dash|1, 14/9, 7/4, 11/8}}
| mothwellsmic
| {{dash|1/1, 11/8, 14/9, 7/4}}
| {{dash|1/1, 8/7, 14/11, 16/11}}
| {{dash|1/1, 9/8, 9/7, 7/4}}
| {{dash|1/1, 8/7, 11/7, 16/9}}
|
|-
| 58
| {{dash|0, 9, 10, 18}}
| {{dash|1, 7/6, 7/4, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8, 7/4}}
| {{dash|1/1, 7/6, 3/2, 12/7}}
| {{dash|1/1, 14/11, 16/11, 12/7}}
| {{dash|1/1, 8/7, 4/3, 11/7}}
|
|-
| 59
| {{dash|0, 4, 14, 18}}
| {{dash|1, 5/4, 11/10, 11/8}}
| valinorsmic
| {{dash|1/1, 11/10, 5/4, 11/8}}
| {{dash|1/1, 8/7, 5/4, 20/11}}
| {{dash|1/1, 11/10, 8/5, 7/4}}
| {{dash|1/1, 16/11, 8/5, 20/11}}
|
|-
| 60
| {{dash|0, 8, 14, 18}}
| {{dash|1, 11/7, 11/10, 11/8}}
| utonal
| {{dash|1/1, 11/10, 11/8, 11/7}}
| {{dash|1/1, 5/4, 10/7, 20/11}}
| {{dash|1/1, 8/7, 16/11, 8/5}}
| {{dash|1/1, 14/11, 7/5, 7/4}}
|
|-
| 61
| {{dash|0, 10, 14, 18}}
| {{dash|1, 7/4, 11/10, 11/8}}
| minerva
| {{dash|1/1, 11/10, 11/8, 7/4}}
| {{dash|1/1, 5/4, 8/5, 20/11}}
| {{dash|1/1, 14/11, 16/11, 8/5}}
| {{dash|1/1, 8/7, 5/4, 11/7}}
|
|-
| 62
| {{dash|0, 2, 16, 18}}
| {{dash|1, 9/8, 11/9, 11/8}}
| didymic
| {{dash|1/1, 9/8, 11/9, 11/8}}
| {{dash|1/1, 11/10, 11/9, 16/9}}
| {{dash|1/1, 9/8, 18/11, 20/11}}
| {{dash|1/1, 16/11, 18/11, 16/9}}
|
|-
| 63
| {{dash|0, 8, 16, 18}}
| {{dash|1, 11/7, 11/9, 11/8}}
| utonal
| {{dash|1/1, 11/9, 11/8, 11/7}}
| {{dash|1/1, 9/8, 9/7, 18/11}}
| {{dash|1/1, 8/7, 16/11, 16/9}}
| {{dash|1/1, 14/11, 14/9, 7/4}}
|
|-
| 64
| {{dash|0, 10, 16, 18}}
| {{dash|1, 7/4, 11/9, 11/8}}
| euterpe
| {{dash|1/1, 11/9, 11/8, 7/4}}
| {{dash|1/1, 9/8, 10/7, 18/11}}
| {{dash|1/1, 14/11, 16/11, 16/9}}
| {{dash|1/1, 8/7, 7/5, 11/7}}
|
|-
| 65
| {{dash|0, 14, 16, 18}}
| {{dash|1, 11/10, 11/9, 11/8}}
| utonal
| {{dash|1/1, 11/10, 11/9, 11/8}}
| {{dash|1/1, 10/9, 5/4, 20/11}}
| {{dash|1/1, 9/8, 18/11, 9/5}}
| {{dash|1/1, 16/11, 8/5, 16/9}}
|
|-
| 66
| {{dash|0, 1, 17, 18}}
| {{dash|1, 3/2, 11/6, 11/8}}
| ambitonal
| {{dash|1/1, 11/8, 3/2, 11/6}}
| {{dash|1/1, 12/11, 4/3, 16/11}}
| {{dash|1/1, 11/9, 4/3, 11/6}}
| {{dash|1/1, 12/11, 3/2, 18/11}}
|
|-
| 67
| {{dash|0, 8, 17, 18}}
| {{dash|1, 11/7, 11/6, 11/8}}
| utonal
| {{dash|1/1, 11/8, 11/7, 11/6}}
| {{dash|1/1, 8/7, 4/3, 16/11}}
| {{dash|1/1, 7/6, 14/11, 7/4}}
| {{dash|1/1, 12/11, 3/2, 12/7}}
|
|-
| 68
| {{dash|0, 9, 17, 18}}
| {{dash|1, 7/6, 11/6, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8, 11/6}}
| {{dash|1/1, 7/6, 11/7, 12/7}}
| {{dash|1/1, 4/3, 16/11, 12/7}}
| {{dash|1/1, 12/11, 14/11, 3/2}}
|
|-
| 69
| {{dash|0, 14, 17, 18}}
| {{dash|1, 11/10, 11/6, 11/8}}
| utonal
| {{dash|1/1, 11/10, 11/8, 11/6}}
| {{dash|1/1, 5/4, 5/3, 20/11}}
| {{dash|1/1, 4/3, 16/11, 8/5}}
| {{dash|1/1, 12/11, 6/5, 3/2}}
|
|-
| 70
| {{dash|0, 16, 17, 18}}
| {{dash|1, 11/9, 11/6, 11/8}}
| utonal
| {{dash|1/1, 11/9, 11/8, 11/6}}
| {{dash|1/1, 9/8, 3/2, 18/11}}
| {{dash|1/1, 4/3, 16/11, 16/9}}
| {{dash|1/1, 12/11, 4/3, 3/2}}
|
|}
 
== Pentads ==
{| class="wikitable"
|-
! Chord
! Transversal
! Type
! As generated
! First inversion
! Second inversion
! Third inversion
! Fourth inversion
|-
| {{dash|0, 1, 2, 3, 4}}
| {{dash|1, 3/2, 9/8, 5/3, 5/4}}
| didymic
| {{dash|1/1, 9/8, 5/4, 3/2, 5/3  }}
| {{dash|1/1, 10/9, 4/3, 3/2, 16/9  }}
| {{dash|1/1, 6/5, 4/3, 8/5, 9/5  }}
| {{dash|1/1, 10/9, 4/3, 3/2, 5/3  }}
| {{dash|1/1, 6/5, 4/3, 3/2, 9/5  }}
|-
| {{dash|0, 2, 3, 4, 6}}
| {{dash|1, 9/8, 5/3, 5/4, 7/5}}
| erato
| {{dash|1/1, 9/8, 5/4, 7/5, 5/3  }}
| {{dash|1/1, 10/9, 5/4, 3/2, 16/9  }}
| {{dash|1/1, 10/9, 4/3, 8/5, 9/5  }}
| {{dash|1/1, 6/5, 10/7, 8/5, 9/5  }}
| {{dash|1/1, 6/5, 4/3, 3/2, 5/3  }}
|-
| {{dash|0, 2, 4, 6, 8}}
| {{dash|1, 9/8, 5/4, 7/5, 14/9}}
| erato
| {{dash|1/1, 9/8, 5/4, 7/5, 14/9  }}
| {{dash|1/1, 10/9, 5/4, 7/5, 16/9  }}
| {{dash|1/1, 10/9, 5/4, 8/5, 9/5  }}
| {{dash|1/1, 10/9, 10/7, 8/5, 9/5  }}
| {{dash|1/1, 9/7, 10/7, 8/5, 9/5  }}
|-
| {{dash|0, 1, 2, 4, 10}}
| {{dash|1, 3/2, 9/8, 5/4, 7/4}}
| otonal
| {{dash|1/1, 9/8, 5/4, 3/2, 7/4  }}
| {{dash|1/1, 10/9, 4/3, 14/9, 16/9  }}
| {{dash|1/1, 6/5, 7/5, 8/5, 9/5  }}
| {{dash|1/1, 7/6, 4/3, 3/2, 5/3  }}
| {{dash|1/1, 8/7, 9/7, 10/7, 12/7  }}
|-
| {{dash|0, 2, 4, 6, 10}}
| {{dash|1, 9/8, 5/4, 7/5, 7/4}}
| erato
| {{dash|1/1, 9/8, 5/4, 7/5, 7/4  }}
| {{dash|1/1, 10/9, 5/4, 14/9, 16/9  }}
| {{dash|1/1, 10/9, 7/5, 8/5, 9/5  }}
| {{dash|1/1, 5/4, 10/7, 8/5, 9/5  }}
| {{dash|1/1, 8/7, 9/7, 10/7, 8/5  }}
|-
| {{dash|0, 2, 4, 8, 10}}
| {{dash|1, 9/8, 5/4, 14/9, 7/4}}
| erato
| {{dash|1/1, 9/8, 5/4, 14/9, 7/4  }}
| {{dash|1/1, 10/9, 7/5, 14/9, 16/9  }}
| {{dash|1/1, 5/4, 7/5, 8/5, 9/5  }}
| {{dash|1/1, 9/8, 9/7, 10/7, 8/5  }}
| {{dash|1/1, 8/7, 9/7, 10/7, 16/9  }}
|-
| {{dash|0, 2, 6, 8, 10}}
| {{dash|1, 9/8, 7/5, 14/9, 7/4}}
| erato
| {{dash|1/1, 9/8, 7/5, 14/9, 7/4  }}
| {{dash|1/1, 5/4, 7/5, 14/9, 16/9  }}
| {{dash|1/1, 10/9, 5/4, 10/7, 8/5  }}
| {{dash|1/1, 9/8, 9/7, 10/7, 9/5  }}
| {{dash|1/1, 8/7, 9/7, 8/5, 16/9  }}
|-
| {{dash|0, 4, 6, 8, 10}}
| {{dash|1, 5/4, 7/5, 14/9, 7/4}}
| erato
| {{dash|1/1, 5/4, 7/5, 14/9, 7/4  }}
| {{dash|1/1, 9/8, 5/4, 7/5, 8/5  }}
| {{dash|1/1, 10/9, 5/4, 10/7, 9/5  }}
| {{dash|1/1, 9/8, 9/7, 8/5, 9/5  }}
| {{dash|1/1, 8/7, 10/7, 8/5, 16/9  }}
|-
| {{dash|0, 6, 8, 9, 10}}
| {{dash|1, 7/5, 14/9, 7/6, 7/4}}
| utonal
| {{dash|1/1, 7/6, 7/5, 14/9, 7/4  }}
| {{dash|1/1, 6/5, 4/3, 3/2, 12/7  }}
| {{dash|1/1, 10/9, 5/4, 10/7, 5/3  }}
| {{dash|1/1, 9/8, 9/7, 3/2, 9/5  }}
| {{dash|1/1, 8/7, 4/3, 8/5, 16/9  }}
|-
| {{dash|0, 4, 6, 8, 14}}
| {{dash|1, 5/4, 7/5, 14/9, 11/10}}
| meantone
| {{dash|1/1, 11/10, 5/4, 7/5, 14/9  }}
| {{dash|1/1, 9/8, 14/11, 10/7, 20/11 }}
| {{dash|1/1, 10/9, 5/4, 8/5, 7/4  }}
| {{dash|1/1, 10/9, 10/7, 11/7, 9/5  }}
| {{dash|1/1, 9/7, 7/5, 8/5, 9/5  }}
|-
| {{dash|0, 4, 6, 10, 14}}
| {{dash|1, 5/4, 7/5, 7/4, 11/10}}
| minerva
| {{dash|1/1, 11/10, 5/4, 7/5, 7/4  }}
| {{dash|1/1, 9/8, 14/11, 8/5, 20/11 }}
| {{dash|1/1, 10/9, 7/5, 8/5, 7/4  }}
| {{dash|1/1, 5/4, 10/7, 11/7, 9/5  }}
| {{dash|1/1, 8/7, 5/4, 10/7, 8/5  }}
|-
| {{dash|0, 4, 8, 10, 14}}
| {{dash|1, 5/4, 14/9, 7/4, 11/10}}
| minerva
| {{dash|1/1, 11/10, 5/4, 14/9, 7/4  }}
| {{dash|1/1, 9/8, 7/5, 8/5, 20/11 }}
| {{dash|1/1, 5/4, 7/5, 8/5, 7/4  }}
| {{dash|1/1, 9/8, 9/7, 7/5, 8/5  }}
| {{dash|1/1, 8/7, 5/4, 10/7, 16/9  }}
|-
| {{dash|0, 6, 8, 10, 14}}
| {{dash|1, 7/5, 14/9, 7/4, 11/10}}
| meantone
| {{dash|1/1, 11/10, 7/5, 14/9, 7/4  }}
| {{dash|1/1, 14/11, 7/5, 8/5, 20/11 }}
| {{dash|1/1, 10/9, 5/4, 10/7, 11/7  }}
| {{dash|1/1, 9/8, 9/7, 7/5, 9/5  }}
| {{dash|1/1, 8/7, 5/4, 8/5, 16/9  }}
|-
| {{dash|0, 2, 6, 8, 16}}
| {{dash|1, 9/8, 7/5, 14/9, 11/9}}
| meantone
| {{dash|1/1, 9/8, 11/9, 7/5, 14/9  }}
| {{dash|1/1, 11/10, 5/4, 7/5, 16/9  }}
| {{dash|1/1, 8/7, 14/11, 18/11, 20/11 }}
| {{dash|1/1, 10/9, 10/7, 8/5, 7/4  }}
| {{dash|1/1, 9/7, 10/7, 11/7, 9/5  }}
|-
| {{dash|0, 2, 6, 10, 16}}
| {{dash|1, 9/8, 7/5, 7/4, 11/9}}
| meantone
| {{dash|1/1, 9/8, 11/9, 7/5, 7/4  }}
| {{dash|1/1, 11/10, 5/4, 14/9, 16/9  }}
| {{dash|1/1, 8/7, 10/7, 18/11, 20/11 }}
| {{dash|1/1, 5/4, 10/7, 8/5, 7/4  }}
| {{dash|1/1, 8/7, 9/7, 7/5, 8/5  }}
|-
| {{dash|0, 2, 8, 10, 16}}
| {{dash|1, 9/8, 14/9, 7/4, 11/9}}
| euterpe
| {{dash|1/1, 9/8, 11/9, 14/9, 7/4  }}
| {{dash|1/1, 11/10, 7/5, 14/9, 16/9  }}
| {{dash|1/1, 14/11, 10/7, 18/11, 20/11 }}
| {{dash|1/1, 9/8, 9/7, 10/7, 11/7  }}
| {{dash|1/1, 8/7, 9/7, 7/5, 16/9  }}
|-
| {{dash|0, 6, 8, 10, 16}}
| {{dash|1, 7/5, 14/9, 7/4, 11/9}}
| euterpe
| {{dash|1/1, 11/9, 7/5, 14/9, 7/4  }}
| {{dash|1/1, 8/7, 14/11, 10/7, 18/11 }}
| {{dash|1/1, 10/9, 5/4, 10/7, 7/4  }}
| {{dash|1/1, 9/8, 9/7, 11/7, 9/5  }}
| {{dash|1/1, 8/7, 7/5, 8/5, 16/9  }}
|-
| {{dash|0, 6, 8, 14, 16}}
| {{dash|1, 7/5, 14/9, 11/10, 11/9}}
| euterpe
| {{dash|1/1, 11/10, 11/9, 7/5, 14/9  }}
| {{dash|1/1, 10/9, 14/11, 10/7, 20/11 }}
| {{dash|1/1, 8/7, 14/11, 18/11, 9/5  }}
| {{dash|1/1, 10/9, 10/7, 11/7, 7/4  }}
| {{dash|1/1, 9/7, 7/5, 11/7, 9/5  }}
|-
| {{dash|0, 6, 10, 14, 16}}
| {{dash|1, 7/5, 7/4, 11/10, 11/9}}
| meantone
| {{dash|1/1, 11/10, 11/9, 7/5, 7/4  }}
| {{dash|1/1, 10/9, 14/11, 8/5, 20/11 }}
| {{dash|1/1, 8/7, 10/7, 18/11, 9/5  }}
| {{dash|1/1, 5/4, 10/7, 11/7, 7/4  }}
| {{dash|1/1, 8/7, 5/4, 7/5, 8/5  }}
|-
| {{dash|0, 8, 10, 14, 16}}
| {{dash|1, 14/9, 7/4, 11/10, 11/9}}
| meantone
| {{dash|1/1, 11/10, 11/9, 14/9, 7/4  }}
| {{dash|1/1, 10/9, 7/5, 8/5, 20/11 }}
| {{dash|1/1, 14/11, 10/7, 18/11, 9/5  }}
| {{dash|1/1, 9/8, 9/7, 7/5, 11/7  }}
| {{dash|1/1, 8/7, 5/4, 7/5, 16/9  }}
|-
| {{dash|0, 1, 3, 9, 17}}
| {{dash|1, 3/2, 5/3, 7/6, 11/6}}
| otonal
| {{dash|1/1, 7/6, 3/2, 5/3, 11/6  }}
| {{dash|1/1, 9/7, 10/7, 11/7, 12/7  }}
| {{dash|1/1, 10/9, 11/9, 4/3, 14/9  }}
| {{dash|1/1, 11/10, 6/5, 7/5, 9/5  }}
| {{dash|1/1, 12/11, 14/11, 18/11, 20/11 }}
|-
| {{dash|0, 8, 14, 16, 17}}
| {{dash|1, 11/7, 11/10, 11/9, 11/6}}
| utonal
| {{dash|1/1, 11/10, 11/9, 11/7, 11/6  }}
| {{dash|1/1, 10/9, 10/7, 5/3, 20/11 }}
| {{dash|1/1, 9/7, 3/2, 18/11, 9/5  }}
| {{dash|1/1, 7/6, 14/11, 7/5, 14/9  }}
| {{dash|1/1, 12/11, 6/5, 4/3, 12/7  }}
|-
| {{dash|0, 1, 2, 4, 18}}
| {{dash|1, 3/2, 9/8, 5/4, 11/8}}
| otonal
| {{dash|1/1, 9/8, 5/4, 11/8, 3/2  }}
| {{dash|1/1, 10/9, 11/9, 4/3, 16/9  }}
| {{dash|1/1, 11/10, 6/5, 8/5, 9/5  }}
| {{dash|1/1, 12/11, 16/11, 18/11, 20/11 }}
| {{dash|1/1, 4/3, 3/2, 5/3, 11/6  }}
|-
| {{dash|0, 2, 4, 8, 18}}
| {{dash|1, 9/8, 5/4, 14/9, 11/8}}
| meantone
| {{dash|1/1, 9/8, 5/4, 11/8, 14/9  }}
| {{dash|1/1, 10/9, 11/9, 7/5, 16/9  }}
| {{dash|1/1, 11/10, 5/4, 8/5, 9/5  }}
| {{dash|1/1, 8/7, 16/11, 18/11, 20/11 }}
| {{dash|1/1, 9/7, 10/7, 8/5, 7/4  }}
|-
| {{dash|0, 1, 2, 10, 18}}
| {{dash|1, 3/2, 9/8, 7/4, 11/8}}
| otonal
| {{dash|1/1, 9/8, 11/8, 3/2, 7/4  }}
| {{dash|1/1, 11/9, 4/3, 14/9, 16/9  }}
| {{dash|1/1, 12/11, 14/11, 16/11, 18/11 }}
| {{dash|1/1, 7/6, 4/3, 3/2, 11/6  }}
| {{dash|1/1, 8/7, 9/7, 11/7, 12/7  }}
|-
| {{dash|0, 1, 4, 10, 18}}
| {{dash|1, 3/2, 5/4, 7/4, 11/8}}
| otonal
| {{dash|1/1, 5/4, 11/8, 3/2, 7/4  }}
| {{dash|1/1, 11/10, 6/5, 7/5, 8/5  }}
| {{dash|1/1, 12/11, 14/11, 16/11, 20/11 }}
| {{dash|1/1, 7/6, 4/3, 5/3, 11/6  }}
| {{dash|1/1, 8/7, 10/7, 11/7, 12/7  }}
|-
| {{dash|0, 2, 4, 10, 18}}
| {{dash|1, 9/8, 5/4, 7/4, 11/8}}
| otonal
| {{dash|1/1, 9/8, 5/4, 11/8, 7/4  }}
| {{dash|1/1, 10/9, 11/9, 14/9, 16/9  }}
| {{dash|1/1, 11/10, 7/5, 8/5, 9/5  }}
| {{dash|1/1, 14/11, 16/11, 18/11, 20/11 }}
| {{dash|1/1, 8/7, 9/7, 10/7, 11/7  }}
|-
| {{dash|0, 2, 8, 10, 18}}
| {{dash|1, 9/8, 14/9, 7/4, 11/8}}
| euterpe
| {{dash|1/1, 9/8, 11/8, 14/9, 7/4  }}
| {{dash|1/1, 11/9, 7/5, 14/9, 16/9  }}
| {{dash|1/1, 8/7, 14/11, 16/11, 18/11 }}
| {{dash|1/1, 9/8, 9/7, 10/7, 7/4  }}
| {{dash|1/1, 8/7, 9/7, 11/7, 16/9  }}
|-
| {{dash|0, 4, 8, 10, 18}}
| {{dash|1, 5/4, 14/9, 7/4, 11/8}}
| minerva
| {{dash|1/1, 5/4, 11/8, 14/9, 7/4  }}
| {{dash|1/1, 11/10, 5/4, 7/5, 8/5  }}
| {{dash|1/1, 8/7, 14/11, 16/11, 20/11 }}
| {{dash|1/1, 9/8, 9/7, 8/5, 7/4  }}
| {{dash|1/1, 8/7, 10/7, 11/7, 16/9  }}
|-
| {{dash|0, 1, 9, 10, 18}}
| {{dash|1, 3/2, 7/6, 7/4, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8, 3/2, 7/4  }}
| {{dash|1/1, 7/6, 9/7, 3/2, 12/7  }}
| {{dash|1/1, 12/11, 14/11, 16/11, 12/7  }}
| {{dash|1/1, 7/6, 4/3, 14/9, 11/6  }}
| {{dash|1/1, 8/7, 4/3, 11/7, 12/7  }}
|-
| {{dash|0, 8, 9, 10, 18}}
| {{dash|1, 14/9, 7/6, 7/4, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8, 14/9, 7/4  }}
| {{dash|1/1, 7/6, 4/3, 3/2, 12/7  }}
| {{dash|1/1, 8/7, 14/11, 16/11, 12/7  }}
| {{dash|1/1, 9/8, 9/7, 3/2, 7/4  }}
| {{dash|1/1, 8/7, 4/3, 11/7, 16/9  }}
|-
| {{dash|0, 4, 8, 14, 18}}
| {{dash|1, 5/4, 14/9, 11/10, 11/8}}
| minerva
| {{dash|1/1, 11/10, 5/4, 11/8, 14/9  }}
| {{dash|1/1, 9/8, 5/4, 10/7, 20/11 }}
| {{dash|1/1, 11/10, 5/4, 8/5, 7/4  }}
| {{dash|1/1, 8/7, 16/11, 8/5, 20/11 }}
| {{dash|1/1, 9/7, 7/5, 8/5, 7/4  }}
|-
| {{dash|0, 4, 10, 14, 18}}
| {{dash|1, 5/4, 7/4, 11/10, 11/8}}
| minerva
| {{dash|1/1, 11/10, 5/4, 11/8, 7/4  }}
| {{dash|1/1, 9/8, 5/4, 8/5, 20/11 }}
| {{dash|1/1, 11/10, 7/5, 8/5, 7/4  }}
| {{dash|1/1, 14/11, 16/11, 8/5, 20/11 }}
| {{dash|1/1, 8/7, 5/4, 10/7, 11/7  }}
|-
| {{dash|0, 8, 10, 14, 18}}
| {{dash|1, 14/9, 7/4, 11/10, 11/8}}
| minerva
| {{dash|1/1, 11/10, 11/8, 14/9, 7/4  }}
| {{dash|1/1, 5/4, 7/5, 8/5, 20/11 }}
| {{dash|1/1, 8/7, 14/11, 16/11, 8/5  }}
| {{dash|1/1, 9/8, 9/7, 7/5, 7/4  }}
| {{dash|1/1, 8/7, 5/4, 11/7, 16/9  }}
|-
| {{dash|0, 2, 8, 16, 18}}
| {{dash|1, 9/8, 14/9, 11/9, 11/8}}
| euterpe
| {{dash|1/1, 9/8, 11/9, 11/8, 14/9  }}
| {{dash|1/1, 11/10, 11/9, 7/5, 16/9  }}
| {{dash|1/1, 9/8, 14/11, 18/11, 20/11 }}
| {{dash|1/1, 8/7, 16/11, 18/11, 16/9  }}
| {{dash|1/1, 9/7, 10/7, 11/7, 7/4  }}
|-
| {{dash|0, 2, 10, 16, 18}}
| {{dash|1, 9/8, 7/4, 11/9, 11/8}}
| euterpe
| {{dash|1/1, 9/8, 11/9, 11/8, 7/4  }}
| {{dash|1/1, 11/10, 11/9, 14/9, 16/9  }}
| {{dash|1/1, 9/8, 10/7, 18/11, 20/11 }}
| {{dash|1/1, 14/11, 16/11, 18/11, 16/9  }}
| {{dash|1/1, 8/7, 9/7, 7/5, 11/7  }}
|-
| {{dash|0, 8, 10, 16, 18}}
| {{dash|1, 14/9, 7/4, 11/9, 11/8}}
| euterpe
| {{dash|1/1, 11/9, 11/8, 14/9, 7/4  }}
| {{dash|1/1, 9/8, 14/11, 10/7, 18/11 }}
| {{dash|1/1, 8/7, 14/11, 16/11, 16/9  }}
| {{dash|1/1, 9/8, 9/7, 11/7, 7/4  }}
| {{dash|1/1, 8/7, 7/5, 11/7, 16/9  }}
|-
| {{dash|0, 8, 14, 16, 18}}
| {{dash|1, 11/7, 11/10, 11/9, 11/8}}
| utonal
| {{dash|1/1, 11/10, 11/9, 11/8, 11/7  }}
| {{dash|1/1, 10/9, 5/4, 10/7, 20/11 }}
| {{dash|1/1, 9/8, 9/7, 18/11, 9/5  }}
| {{dash|1/1, 8/7, 16/11, 8/5, 16/9  }}
| {{dash|1/1, 14/11, 7/5, 14/9, 7/4  }}
|-
| {{dash|0, 10, 14, 16, 18}}
| {{dash|1, 7/4, 11/10, 11/9, 11/8}}
| meantone
| {{dash|1/1, 11/10, 11/9, 11/8, 7/4  }}
| {{dash|1/1, 10/9, 5/4, 8/5, 20/11 }}
| {{dash|1/1, 9/8, 10/7, 18/11, 9/5  }}
| {{dash|1/1, 14/11, 16/11, 8/5, 16/9  }}
| {{dash|1/1, 8/7, 5/4, 7/5, 11/7  }}
|-
| {{dash|0, 1, 9, 17, 18}}
| {{dash|1, 3/2, 7/6, 11/6, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8, 3/2, 11/6  }}
| {{dash|1/1, 7/6, 9/7, 11/7, 12/7  }}
| {{dash|1/1, 12/11, 4/3, 16/11, 12/7  }}
| {{dash|1/1, 11/9, 4/3, 14/9, 11/6  }}
| {{dash|1/1, 12/11, 14/11, 3/2, 18/11 }}
|-
| {{dash|0, 8, 9, 17, 18}}
| {{dash|1, 14/9, 7/6, 11/6, 11/8}}
| mothwellsmic
| {{dash|1/1, 7/6, 11/8, 14/9, 11/6  }}
| {{dash|1/1, 7/6, 4/3, 11/7, 12/7  }}
| {{dash|1/1, 8/7, 4/3, 16/11, 12/7  }}
| {{dash|1/1, 7/6, 9/7, 3/2, 7/4  }}
| {{dash|1/1, 12/11, 14/11, 3/2, 12/7  }}
|-
| {{dash|0, 8, 14, 17, 18}}
| {{dash|1, 11/7, 11/10, 11/6, 11/8}}
| utonal
| {{dash|1/1, 11/10, 11/8, 11/7, 11/6  }}
| {{dash|1/1, 5/4, 10/7, 5/3, 20/11 }}
| {{dash|1/1, 8/7, 4/3, 16/11, 8/5  }}
| {{dash|1/1, 7/6, 14/11, 7/5, 7/4  }}
| {{dash|1/1, 12/11, 6/5, 3/2, 12/7  }}
|-
| {{dash|0, 8, 16, 17, 18}}
| {{dash|1, 11/7, 11/9, 11/6, 11/8}}
| utonal
| {{dash|1/1, 11/9, 11/8, 11/7, 11/6  }}
| {{dash|1/1, 9/8, 9/7, 3/2, 18/11 }}
| {{dash|1/1, 8/7, 4/3, 16/11, 16/9  }}
| {{dash|1/1, 7/6, 14/11, 14/9, 7/4  }}
| {{dash|1/1, 12/11, 4/3, 3/2, 12/7  }}
|-
| {{dash|0, 14, 16, 17, 18}}
| {{dash|1, 11/10, 11/9, 11/6, 11/8}}
| utonal
| {{dash|1/1, 11/10, 11/9, 11/8, 11/6  }}
| {{dash|1/1, 10/9, 5/4, 5/3, 20/11 }}
| {{dash|1/1, 9/8, 3/2, 18/11, 9/5  }}
| {{dash|1/1, 4/3, 16/11, 8/5, 16/9  }}
| {{dash|1/1, 12/11, 6/5, 4/3, 3/2  }}
|}
 
== Hexads ==
{| class="wikitable"
|-
! Number
! Chord
! Transversal
! Type
|-
| 1
| {{dash|0, 2, 4, 6, 8, 10}}
| {{dash|1, 9/8, 5/4, 7/5, 14/9, 7/4}}
| erato
|-
| 2
| {{dash|0, 4, 6, 8, 10, 14}}
| {{dash|1, 5/4, 7/5, 14/9, 7/4, 11/10}}
| meantone
|-
| 3
| {{dash|0, 2, 6, 8, 10, 16}}
| {{dash|1, 9/8, 7/5, 14/9, 7/4, 11/9}}
| meantone
|-
| 4
| {{dash|0, 6, 8, 10, 14, 16}}
| {{dash|1, 7/5, 14/9, 7/4, 11/10, 11/9}}
| meantone
|-
| 5
| {{dash|0, 1, 2, 4, 10, 18}}
| {{dash|1, 3/2, 9/8, 5/4, 7/4, 11/8}}
| otonal
|-
| 6
| {{dash|0, 2, 4, 8, 10, 18}}
| {{dash|1, 9/8, 5/4, 14/9, 7/4, 11/8}}
| meantone
|-
| 7
| {{dash|0, 4, 8, 10, 14, 18}}
| {{dash|1, 5/4, 14/9, 7/4, 11/10, 11/8}}
| minerva
|-
| 8
| {{dash|0, 2, 8, 10, 16, 18}}
| {{dash|1, 9/8, 14/9, 7/4, 11/9, 11/8}}
| euterpe
|-
| 9
| {{dash|0, 8, 10, 14, 16, 18}}
| {{dash|1, 14/9, 7/4, 11/10, 11/9, 11/8-}}
| meantone
|-
| 10
| {{dash|0, 8, 14, 16, 17, 18}}
| {{dash|1, 11/7, 11/10, 11/9, 11/6, 11/8}}
| utonal
|}
 
[[Category:Lists of chords]]
[[Category:Dyadic chords]]
[[Category:11-limit]]
[[Category:Meantone]]

Revision as of 21:57, 22 June 2025

Below are listed the dyadic chords of 11-limit meantone temperament. By "meantone" is meant one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 99/98, and 126/125. Typing the chords requires consideration of the fact that meantone conflates 9/8 and 10/9 and also 9/7 and 14/11. If a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.

(For the inversions, there has been no attempt to note any equivalencies. Keep in mind that 10/9 can be thought of as 9/8, 16/9 as 9/5, 9/7 as 14/11, and vice versa.)

Chords requiring tempering only by 81/80 are labeled didymic, by 99/98 mothwellsmic, by 126/125 starling, by 176/175 valinorsmic, by 225/224 marvel, and by 441/440 werckismic. Chords which require any two of 81/80, 99/98 or 441/440 are labeled euterpe, by and two of 81/80, 126/125, or 225/224 erato, and by any two of 99/98, 176/175, or 225/224 minerva. A chord requiring any three independent commas from those discussed above is labeled meantone.

The transversal is in generator order. This is useful because it tells how common the chords are: For instance, a chord that appears on the sixth generation will appear exactly once in meantone[7], six times in meantone[12], and 13 times in meantone[19].

The "as generated" column takes the intervals that were generated and places them in size order. The 1st and 2nd inversion (and so on) columns show the inversions of those generated tones. Note that this gives different results than you might be used to: For instance, the minor chord (1/1 – 6/5 – 3/2, or 10:12:15) is the second inversion of the generated 0 – 3 – 4 chord.

Though we're used to thinking of 10:12:15 as the definitive "minor chord", with all inversions coming from that, there is nothing definitive about calling these lists below "chord" or "inversion". That's just the way the generators came out.

Meantone has MOS of size 5, 7, 12, 19, 31, 43 and 74. While one might suppose meantone has been thoroughly explored, this really isn't true in the 7-limit, and it can hardly be said to have been explored at all in the 11-limit. The 19 note MOS would seem to be a good place to start such explorations.

The bolded inversions are named using ups and downs, to avoid aug, dim, double-aug and double-dim intervals. One up is −12 fifths, a descending Pythagorean comma. Thus ^1 = d2 and ^C = Dbb. One up represents ~64/63, ~45/44, and ~40/39. If c is the difference between 700 ¢ and the size of the generator in cents, then one up is equal to 12c.

11-limit meantone's genchain
Genspan 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Cents (31edo) 0 697 194 890 387 1084 581 77 774 271 968 465 1161 658 155 852 348 1045 542
Ratio 1/1 3/2 9/8
10/9
5/3 5/4 15/8 45/32
7/5
21/20 63/40
14/9
7/6 7/4 21/16
13/10
35/18 13/9 11/10
13/12
13/8 11/9 11/6 11/8
Interval P1 P5 M2 M6 M3 M7 A4
vd5
A1
vm2
A5
vm6
A2
vm3
A6
vm7
A3
v4
A7
v8
AA4
v5
AA1
vM2
AA5
vM6
AA2
vM3
AA6
vM7
AA3
vA4
Note
(in C)
C G D A E B F# C# G#
vAb
D#
vEb
A#
vBb
E#
vF
B#
vC
Fx
vG
Cx
vD
Gx
vA
Dx
vE
Ax
vB
Ex
vF#

TODO: complete the tables

Triads

# Chord Transversal Type As generated 1st inversion 2nd inversion Name
1 0 – 1 – 2 1 – 3/2 – 9/8 ambitonal 1/1 – 9/8 – 3/2 1/1 – 4/3 – 16/9 1/1 – 4/3 – 3/2 C2 or C4
2 0 – 1 – 3 1 – 3/2 – 5/3 otonal 1/1 – 3/2 – 5/3 1/1 – 10/9 – 4/3 1/1 – 6/5 – 9/5 Cm7no5
3 0 – 2 – 3 1 – 10/9 – 5/3 utonal 1/1 – 10/9 – 5/3 1/1 – 3/2 – 9/5 1/1 – 6/5 – 4/3 C7no3
4 0 – 1 – 4 1 – 3/2 – 5/4 otonal 1/1 – 5/4 – 3/2 1/1 – 6/5 – 8/5 1/1 – 4/3 – 5/3 C
5 0 – 2 – 4 1 – 9/8 – 5/4 otonal 1/1 – 9/8 – 5/4 1/1 – 10/9 – 16/9 1/1 – 8/5 – 9/5 Cadd9no5
6 0 – 3 – 4 1 – 5/3 – 5/4 utonal 1/1 – 5/4 – 5/3 1/1 – 4/3 – 8/5 1/1 – 6/5 – 3/2 Cm
7 0 – 2 – 6 1 – 9/8 – 7/5 marvel 1/1 – 9/8 – 7/5 1/1 – 5/4 – 16/9 1/1 – 10/7 – 8/5 C7no5
8 0 – 3 – 6 1 – 5/3 – 7/5 starling 1/1 – 7/5 – 5/3 1/1 – 6/5 – 10/7 1/1 – 6/5 – 5/3 Cdim
9 0 – 4 – 6 1 – 5/4 – 7/5 marvel 1/1 – 5/4 – 7/5 1/1 – 9/8 – 8/5 1/1 – 10/7 – 16/9 C(vb5)
10 0 – 2 – 8 1 – 10/9 – 14/9 otonal 1/1 – 10/9 – 14/9 1/1 – 7/5 – 9/5 1/1 – 9/7 – 10/7 C2(#5) or C^(b5)
11 0 – 4 – 8 1 – 5/4 – 14/9 marvel 1/1 – 5/4 – 14/9 1/1 – 5/4 – 8/5 1/1 – 9/7 – 8/5 Caug
12 0 – 6 – 8 1 – 7/5 – 14/9 utonal 1/1 – 7/5 – 14/9 1/1 – 10/9 – 10/7 1/1 – 9/7 – 9/5 C2(b5) or C^,7no5
13 0 – 1 – 9 1 – 3/2 – 7/6 otonal 1/1 – 7/6 – 3/2 1/1 – 9/7 – 12/7 1/1 – 4/3 – 14/9 Cvm
14 0 – 3 – 9 1 – 5/3 – 7/6 otonal 1/1 – 7/6 – 5/3 1/1 – 10/7 – 12/7 1/1 – 6/5 – 7/5 Cdim7no3 or Cdim(v5)
15 0 – 6 – 9 1 – 7/5 – 7/6 utonal 1/1 – 7/6 – 7/5 1/1 – 6/5 – 12/7 1/1 – 10/7 – 5/3 Cvdim(v5) or Cdim7no5
16 0 – 8 – 9 1 – 14/9 – 7/6 utonal 1/1 – 7/6 – 14/9 1/1 – 4/3 – 12/7 1/1 – 9/7 – 3/2 C^
17 0 – 1 – 10 1 – 3/2 – 7/4 otonal 1/1 – 3/2 – 7/4 1/1 – 7/6 – 4/3 1/1 – 8/7 – 12/7 Cv7no3
18 0 – 2 – 10 1 – 9/8 – 7/4 otonal 1/1 – 9/8 – 7/4 1/1 – 14/9 – 16/9 1/1 – 8/7 – 9/7 Cv9no35
19 0 – 4 – 10 1 – 5/4 – 7/4 otonal 1/1 – 5/4 – 7/4 1/1 – 7/5 – 8/5 1/1 – 8/7 – 10/7 C,v7no5
20 0 – 6 – 10 1 – 7/5 – 7/4 utonal 1/1 – 7/5 – 7/4 1/1 – 5/4 – 10/7 1/1 – 8/7 – 8/5 C(b5)
21 0 – 8 – 10 1 – 14/9 – 7/4 utonal 1/1 – 14/9 – 7/4 1/1 – 9/8 – 9/7 1/1 – 8/7 – 16/9 C^,9no5
22 0 – 9 – 10 1 – 7/6 – 7/4 utonal 1/1 – 7/6 – 7/4 1/1 – 3/2 – 12/7 1/1 – 8/7 – 4/3 Cvm7no5
23 0 – 4 – 14 1 – 5/4 – 11/10 valinorsmic 1/1 – 11/10 – 5/4 1/1 – 8/7 – 20/11 1/1 – 8/5 – 7/4
24 0 – 6 – 14 1 – 7/5 – 11/10 otonal 1/1 – 11/10 – 7/5 1/1 – 14/11 – 20/11 1/1 – 10/7 – 11/7
25 0 – 8 – 14 1 – 11/7 – 11/10 utonal 1/1 – 11/10 – 11/7 1/1 – 10/7 – 20/11 1/1 – 14/11 – 7/5
26 0 – 10 – 14 1 – 7/4 – 11/10 valinorsmic 1/1 – 11/10 – 7/4 1/1 – 8/5 – 20/11 1/1 – 8/7 – 5/4
27 0 – 2 – 16 1 – 10/9 – 11/9 otonal 1/1 – 10/9 – 11/9 1/1 – 11/10 – 9/5 1/1 – 18/11 – 20/11
28 0 – 6 – 16 1 – 7/5 – 11/9 werckismic 1/1 – 11/9 – 7/5 1/1 – 8/7 – 18/11 1/1 – 10/7 – 7/4
29 0 – 8 – 16 1 – 14/9 – 11/9 otonal 1/1 – 11/9 – 14/9 1/1 – 14/11 – 18/11 1/1 – 9/7 – 11/7
30 0 – 10 – 16 1 – 7/4 – 11/9 werckismic 1/1 – 11/9 – 7/4 1/1 – 10/7 – 18/11 1/1 – 8/7 – 7/5
31 0 – 14 – 16 1 – 11/10 – 11/9 utonal 1/1 – 11/10 – 11/9 1/1 – 10/9 – 20/11 1/1 – 18/11 – 9/5
32 0 – 1 – 17 1 – 3/2 – 11/6 otonal 1/1 – 3/2 – 11/6 1/1 – 11/9 – 4/3 1/1 – 12/11 – 18/11
33 0 – 3 – 17 1 – 5/3 – 11/6 otonal 1/1 – 5/3 – 11/6 1/1 – 11/10 – 6/5 1/1 – 12/11 – 20/11
34 0 – 8 – 17 1 – 11/7 – 11/6 utonal 1/1 – 11/7 – 11/6 1/1 – 7/6 – 14/11 1/1 – 12/11 – 12/7
35 0 – 9 – 17 1 – 7/6 – 11/6 otonal 1/1 – 7/6 – 11/6 1/1 – 11/7 – 12/7 1/1 – 12/11 – 14/11
36 0 – 14 – 17 1 – 11/10 – 11/6 utonal 1/1 – 11/10 – 11/6 1/1 – 5/3 – 20/11 1/1 – 12/11 – 6/5
37 0 – 16 – 17 1 – 11/9 – 11/6 utonal 1/1 – 11/9 – 11/6 1/1 – 3/2 – 18/11 1/1 – 12/11 – 4/3
38 0 – 1 – 18 1 – 3/2 – 11/8 otonal 1/1 – 11/8 – 3/2 1/1 – 12/11 – 16/11 1/1 – 4/3 – 11/6
39 0 – 2 – 18 1 – 9/8 – 11/8 otonal 1/1 – 9/8 – 11/8 1/1 – 11/9 – 16/9 1/1 – 16/11 – 18/11
40 0 – 4 – 18 1 – 5/4 – 11/8 otonal 1/1 – 5/4 – 11/8 1/1 – 11/10 – 8/5 1/1 – 16/11 – 20/11
41 0 – 8 – 18 1 – 11/7 – 11/8 utonal 1/1 – 11/8 – 11/7 1/1 – 8/7 – 16/11 1/1 – 14/11 – 7/4
42 0 – 9 – 18 1 – 7/6 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 1/1 – 7/6 – 12/7 1/1 – 16/11 – 12/7
43 0 – 10 – 18 1 – 7/4 – 11/8 otonal 1/1 – 11/8 – 7/4 1/1 – 14/11 – 16/11 1/1 – 8/7 – 11/7
44 0 – 14 – 18 1 – 11/10 – 11/8 utonal 1/1 – 11/10 – 11/8 1/1 – 5/4 – 20/11 1/1 – 16/11 – 8/5
45 0 – 16 – 18 1 – 11/9 – 11/8 utonal 1/1 – 11/9 – 11/8 1/1 – 9/8 – 18/11 1/1 – 16/11 – 16/9
46 0 – 17 – 18 1 – 11/6 – 11/8 utonal 1/1 – 11/8 – 11/6 1/1 – 4/3 – 16/11 1/1 – 12/11 – 3/2

Tetrads

# Chord Transversal Type As generated 1st inversion 2nd inversion 3rd inversion Name
1 0 – 1 – 2 – 3 1 – 3/2 – 9/8 – 5/3 didymic 1/1 – 9/8 – 3/2 – 5/3 1/1 – 4/3 – 3/2 – 16/9 1/1 – 9/8 – 4/3 – 3/2 1/1 – 6/5 – 4/3 – 9/5 C7sus4 or C4,9
2 0 – 1 – 2 – 4 1 – 3/2 – 9/8 – 5/4 otonal 1/1 – 9/8 – 5/4 – 3/2 1/1 – 10/9 – 4/3 – 16/9 1/1 – 6/5 – 8/5 – 9/5 1/1 – 4/3 – 3/2 – 5/3 Cadd9
3 0 – 1 – 3 – 4 1 – 3/2 – 5/3 – 5/4 ambitonal 1/1 – 5/4 – 3/2 – 5/3 1/1 – 6/5 – 4/3 – 8/5 1/1 – 9/8 – 4/3 – 5/3 1/1 – 6/5 – 3/2 – 9/5 C6 or Cm7
4 0 – 2 – 3 – 4 1 – 10/9 – 5/3 – 5/4 utonal 1/1 – 10/9 – 5/4 – 5/3 1/1 – 9/8 – 3/2 – 9/5 1/1 – 4/3 – 8/5 – 16/9 1/1 – 6/5 – 4/3 – 3/2 C9no3
5 0 – 2 – 3 – 6 1 – 9/8 – 5/3 – 7/5 erato 1/1 – 9/8 – 7/5 – 5/3 1/1 – 5/4 – 3/2 – 16/9 1/1 – 6/5 – 10/7 – 8/5 1/1 – 6/5 – 4/3 – 5/3 C7
6 0 – 2 – 4 – 6 1 – 9/8 – 5/4 – 7/5 erato 1/1 – 9/8 – 5/4 – 7/5 1/1 – 10/9 – 5/4 – 16/9 1/1 – 9/8 – 8/5 – 9/5 1/1 – 10/7 – 8/5 – 9/5 C9no5
7 0 – 3 – 4 – 6 1 – 5/3 – 5/4 – 7/5 erato 1/1 – 5/4 – 7/5 – 5/3 1/1 – 9/8 – 4/3 – 8/5 1/1 – 6/5 – 10/7 – 16/9 1/1 – 6/5 – 3/2 – 5/3 Cm7(b5) or Cm6
8 0 – 2 – 4 – 8 1 – 9/8 – 5/4 – 14/9 erato 1/1 – 9/8 – 5/4 – 14/9 1/1 – 10/9 – 7/5 – 16/9 1/1 – 5/4 – 8/5 – 9/5 1/1 – 9/7 – 10/7 – 8/5 Caug,9
9 0 – 2 – 6 – 8 1 – 9/8 – 7/5 – 14/9 erato 1/1 – 9/8 – 7/5 – 14/9 1/1 – 5/4 – 7/5 – 16/9 1/1 – 10/9 – 10/7 – 8/5 1/1 – 9/7 – 10/7 – 9/5 C7(vb5)
10 0 – 4 – 6 – 8 1 – 5/4 – 7/5 – 14/9 erato 1/1 – 5/4 – 7/5 – 14/9 1/1 – 9/8 – 5/4 – 8/5 1/1 – 10/9 – 10/7 – 16/9 1/1 – 9/7 – 8/5 – 9/5 C9(b5)no3
11 0 – 1 – 3 – 9 1 – 3/2 – 5/3 – 7/6 otonal 1/1 – 7/6 – 3/2 – 5/3 1/1 – 9/7 – 10/7 – 12/7 1/1 – 10/9 – 4/3 – 14/9 1/1 – 6/5 – 7/5 – 9/5 Cm7(vb5)
12 0 – 3 – 6 – 9 1 – 5/3 – 7/5 – 7/6 starling 1/1 – 7/6 – 7/5 – 5/3 1/1 – 6/5 – 10/7 – 12/7 1/1 – 6/5 – 10/7 – 5/3 1/1 – 6/5 – 7/5 – 5/3 Cdim7
13 0 – 6 – 8 – 9 1 – 7/5 – 14/9 – 7/6 utonal 1/1 – 7/6 – 7/5 – 14/9 1/1 – 6/5 – 4/3 – 12/7 1/1 – 10/9 – 10/7 – 5/3 1/1 – 9/7 – 3/2 – 9/5 C^,7
14 0 – 1 – 2 – 10 1 – 3/2 – 9/8 – 7/4 otonal 1/1 – 9/8 – 3/2 – 7/4 1/1 – 4/3 – 14/9 – 16/9 1/1 – 7/6 – 4/3 – 3/2 1/1 – 8/7 – 9/7 – 12/7 Cv7no3 or Cvm,11
15 0 – 1 – 4 – 10 1 – 3/2 – 5/4 – 7/4 otonal 1/1 – 5/4 – 3/2 – 7/4 1/1 – 6/5 – 7/5 – 8/5 1/1 – 7/6 – 4/3 – 5/3 1/1 – 8/7 – 10/7 – 12/7 C,v7
16 0 – 2 – 4 – 10 1 – 9/8 – 5/4 – 7/4 otonal 1/1 – 9/8 – 5/4 – 7/4 1/1 – 10/9 – 14/9 – 16/9 1/1 – 7/5 – 8/5 – 9/5 1/1 – 8/7 – 9/7 – 10/7 C9(v7)no5
17 0 – 2 – 6 – 10 1 – 9/8 – 7/5 – 7/4 marvel 1/1 – 9/8 – 7/5 – 7/4 1/1 – 5/4 – 14/9 – 16/9 1/1 – 5/4 – 10/7 – 8/5 1/1 – 8/7 – 9/7 – 8/5 C7(#5) or Caug7
18 0 – 4 – 6 – 10 1 – 5/4 – 7/5 – 7/4 marvel 1/1 – 5/4 – 7/5 – 7/4 1/1 – 9/8 – 7/5 – 8/5 1/1 – 5/4 – 10/7 – 16/9 1/1 – 8/7 – 10/7 – 8/5 C7(b5)
19 0 – 2 – 8 – 10 1 – 9/8 – 14/9 – 7/4 didymic 1/1 – 9/8 – 14/9 – 7/4 1/1 – 7/5 – 14/9 – 16/9 1/1 – 9/8 – 9/7 – 10/7 1/1 – 8/7 – 9/7 – 16/9
20 0 – 4 – 8 – 10 1 – 5/4 – 14/9 – 7/4 marvel 1/1 – 5/4 – 14/9 – 7/4 1/1 – 5/4 – 7/5 – 8/5 1/1 – 9/8 – 9/7 – 8/5 1/1 – 8/7 – 10/7 – 16/9
21 0 – 6 – 8 – 10 1 – 7/5 – 14/9 – 7/4 utonal 1/1 – 7/5 – 14/9 – 7/4 1/1 – 10/9 – 5/4 – 10/7 1/1 – 9/8 – 9/7 – 9/5 1/1 – 8/7 – 8/5 – 16/9 C,9(b5)
22 0 – 1 – 9 – 10 1 – 3/2 – 7/6 – 7/4 ambitonal 1/1 – 7/6 – 3/2 – 7/4 1/1 – 9/7 – 3/2 – 12/7 1/1 – 7/6 – 4/3 – 14/9 1/1 – 8/7 – 4/3 – 12/7 Cvm7 or C^6
23 0 – 6 – 9 – 10 1 – 7/5 – 7/6 – 7/4 utonal 1/1 – 7/6 – 7/5 – 7/4 1/1 – 6/5 – 3/2 – 12/7 1/1 – 5/4 – 10/7 – 5/3 1/1 – 8/7 – 4/3 – 8/5 Cvm7(vb5) or Cm^6 or C6(b5)
24 0 – 8 – 9 – 10 1 – 14/9 – 7/6 – 7/4 utonal 1/1 – 7/6 – 14/9 – 7/4 1/1 – 4/3 – 3/2 – 12/7 1/1 – 9/8 – 9/7 – 3/2 1/1 – 8/7 – 4/3 – 16/9 Cvm7(#5) or C4^6 or C^,9
25 0 – 4 – 6 – 14 1 – 5/4 – 7/5 – 11/10 minerva 1/1 – 11/10 – 5/4 – 7/5 1/1 – 9/8 – 14/11 – 20/11 1/1 – 9/8 – 8/5 – 7/4 1/1 – 10/7 – 11/7 – 16/9
26 0 – 4 – 8 – 14 1 – 5/4 – 14/9 – 11/10 minerva 1/1 – 11/10 – 5/4 – 14/9 1/1 – 9/8 – 10/7 – 20/11 1/1 – 5/4 – 8/5 – 7/4 1/1 – 9/7 – 7/5 – 8/5
27 0 – 6 – 8 – 14 1 – 7/5 – 14/9 – 11/10 euterpe 1/1 – 11/10 – 7/5 – 14/9 1/1 – 14/11 – 10/7 – 20/11 1/1 – 10/9 – 10/7 – 11/7 1/1 – 9/7 – 7/5 – 9/5 C^,7(vb5)
28 0 – 4 – 10 – 14 1 – 5/4 – 7/4 – 11/10 valinorsmic 1/1 – 11/10 – 5/4 – 7/4 1/1 – 25/22 – 8/5 – 20/11 1/1 – 7/5 – 8/5 – 7/4 1/1 – 8/7 – 5/4 – 10/7 C,^9(b5)
29 0 – 6 – 10 – 14 1 – 7/5 – 7/4 – 11/10 minerva 1/1 – 11/10 – 7/5 – 7/4 1/1 – 14/11 – 8/5 – 20/11 1/1 – 5/4 – 10/7 – 11/7 1/1 – 8/7 – 5/4 – 8/5
30 0 – 8 – 10 – 14 1 – 14/9 – 7/4 – 11/10 minerva 1/1 – 11/10 – 14/9 – 7/4 1/1 – 7/5 – 8/5 – 20/11 1/1 – 9/8 – 9/7 – 7/5 1/1 – 8/7 – 5/4 – 16/9
31 0 – 2 – 6 – 16 1 – 9/8 – 7/5 – 11/9 meantone 1/1 – 9/8 – 11/9 – 7/5 1/1 – 11/10 – 5/4 – 16/9 1/1 – 8/7 – 18/11 – 20/11 1/1 – 10/7 – 8/5 – 7/4
32 0 – 2 – 8 – 16 1 – 10/9 – 14/9 – 11/9 otonal 1/1 – 10/9 – 11/9 – 14/9 1/1 – 11/10 – 7/5 – 9/5 1/1 – 14/11 – 18/11 – 20/11 1/1 – 9/7 – 10/7 – 11/7
33 0 – 6 – 8 – 16 1 – 7/5 – 14/9 – 11/9 euterpe 1/1 – 11/9 – 7/5 – 14/9 1/1 – 8/7 – 14/11 – 18/11 1/1 – 9/8 – 10/7 – 7/4 1/1 – 9/7 – 11/7 – 9/5
34 0 – 2 – 10 – 16 1 – 9/8 – 7/4 – 11/9 euterpe 1/1 – 9/8 – 11/9 – 7/4 1/1 – 11/10 – 14/9 – 16/9 1/1 – 10/7 – 18/11 – 20/11 1/1 – 8/7 – 9/7 – 7/5
35 0 – 6 – 10 – 16 1 – 7/5 – 7/4 – 11/9 werckismic 1/1 – 11/9 – 7/5 – 7/4 1/1 – 8/7 – 10/7 – 18/11 1/1 – 5/4 – 10/7 – 7/4 1/1 – 8/7 – 7/5 – 8/5
36 0 – 8 – 10 – 16 1 – 14/9 – 7/4 – 11/9 euterpe 1/1 – 11/9 – 14/9 – 7/4 1/1 – 14/11 – 10/7 – 18/11 1/1 – 9/8 – 9/7 – 11/7 1/1 – 8/7 – 7/5 – 16/9
37 0 – 6 – 14 – 16 1 – 7/5 – 11/10 – 11/9 euterpe 1/1 – 11/10 – 11/9 – 7/5 1/1 – 10/9 – 14/11 – 20/11 1/1 – 8/7 – 18/11 – 9/5 1/1 – 10/7 – 11/7 – 7/4
38 0 – 8 – 14 – 16 1 – 11/7 – 11/10 – 11/9 utonal 1/1 – 11/10 – 11/9 – 11/7 1/1 – 10/9 – 10/7 – 20/11 1/1 – 9/7 – 18/11 – 9/5 1/1 – 14/11 – 7/5 – 14/9
39 0 – 10 – 14 – 16 1 – 7/4 – 11/10 – 11/9 meantone 1/1 – 11/10 – 11/9 – 7/4 1/1 – 10/9 – 8/5 – 20/11 1/1 – 10/7 – 18/11 – 9/5 1/1 – 8/7 – 5/4 – 7/5
40 0 – 1 – 3 – 17 1 – 3/2 – 5/3 – 11/6 otonal 1/1 – 3/2 – 5/3 – 11/6 1/1 – 10/9 – 11/9 – 4/3 1/1 – 11/10 – 6/5 – 9/5 1/1 – 12/11 – 18/11 – 20/11
41 0 – 1 – 9 – 17 1 – 3/2 – 7/6 – 11/6 otonal 1/1 – 7/6 – 3/2 – 11/6 1/1 – 9/7 – 11/7 – 12/7 1/1 – 11/9 – 4/3 – 14/9 1/1 – 12/11 – 14/11 – 18/11
42 0 – 3 – 9 – 17 1 – 5/3 – 7/6 – 11/6 otonal 1/1 – 7/6 – 5/3 – 11/6 1/1 – 10/7 – 11/7 – 12/7 1/1 – 11/10 – 6/5 – 7/5 1/1 – 12/11 – 14/11 – 20/11
43 0 – 8 – 9 – 17 1 – 14/9 – 7/6 – 11/6 mothwellsmic 1/1 – 7/6 – 14/9 – 11/6 1/1 – 4/3 – 11/7 – 12/7 1/1 – 7/6 – 9/7 – 3/2 1/1 – 12/11 – 14/11 – 12/7
44 0 – 8 – 14 – 17 1 – 11/7 – 11/10 – 11/6 utonal 1/1 – 11/10 – 11/7 – 11/6 1/1 – 10/7 – 5/3 – 20/11 1/1 – 7/6 – 14/11 – 7/5 1/1 – 12/11 – 6/5 – 12/7
45 0 – 8 – 16 – 17 1 – 11/7 – 11/9 – 11/6 utonal 1/1 – 11/9 – 11/7 – 11/6 1/1 – 9/7 – 3/2 – 18/11 1/1 – 7/6 – 14/11 – 14/9 1/1 – 12/11 – 4/3 – 12/7
46 0 – 14 – 16 – 17 1 – 11/10 – 11/9 – 11/6 utonal 1/1 – 11/10 – 11/9 – 11/6 1/1 – 10/9 – 5/3 – 20/11 1/1 – 3/2 – 18/11 – 9/5 1/1 – 12/11 – 6/5 – 4/3
47 0 – 1 – 2 – 18 1 – 3/2 – 9/8 – 11/8 otonal 1/1 – 9/8 – 11/8 – 3/2 1/1 – 11/9 – 4/3 – 16/9 1/1 – 12/11 – 16/11 – 18/11 1/1 – 4/3 – 3/2 – 11/6
48 0 – 1 – 4 – 18 1 – 3/2 – 5/4 – 11/8 otonal 1/1 – 5/4 – 11/8 – 3/2 1/1 – 11/10 – 6/5 – 8/5 1/1 – 12/11 – 16/11 – 20/11 1/1 – 4/3 – 5/3 – 11/6
49 0 – 2 – 4 – 18 1 – 9/8 – 5/4 – 11/8 otonal 1/1 – 9/8 – 5/4 – 11/8 1/1 – 10/9 – 11/9 – 16/9 1/1 – 11/10 – 8/5 – 9/5 1/1 – 16/11 – 18/11 – 20/11
50 0 – 2 – 8 – 18 1 – 9/8 – 14/9 – 11/8 euterpe 1/1 – 9/8 – 11/8 – 14/9 1/1 – 11/9 – 7/5 – 16/9 1/1 – 8/7 – 16/11 – 18/11 1/1 – 9/7 – 10/7 – 7/4
51 0 – 4 – 8 – 18 1 – 5/4 – 14/9 – 11/8 minerva 1/1 – 5/4 – 11/8 – 14/9 1/1 – 11/10 – 5/4 – 8/5 1/1 – 8/7 – 16/11 – 20/11 1/1 – 9/7 – 8/5 – 7/4
52 0 – 1 – 9 – 18 1 – 3/2 – 7/6 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 – 3/2 1/1 – 7/6 – 9/7 – 12/7 1/1 – 12/11 – 16/11 – 12/7 1/1 – 4/3 – 14/9 – 11/6
53 0 – 8 – 9 – 18 1 – 14/9 – 7/6 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 – 14/9 1/1 – 7/6 – 4/3 – 12/7 1/1 – 8/7 – 16/11 – 12/7 1/1 – 9/7 – 3/2 – 7/4
54 0 – 1 – 10 – 18 1 – 3/2 – 7/4 – 11/8 otonal 1/1 – 11/8 – 3/2 – 7/4 1/1 – 12/11 – 14/11 – 16/11 1/1 – 7/6 – 4/3 – 11/6 1/1 – 8/7 – 11/7 – 12/7
55 0 – 2 – 10 – 18 1 – 9/8 – 7/4 – 11/8 otonal 1/1 – 9/8 – 11/8 – 7/4 1/1 – 11/9 – 14/9 – 16/9 1/1 – 14/11 – 16/11 – 18/11 1/1 – 8/7 – 9/7 – 11/7
56 0 – 4 – 10 – 18 1 – 5/4 – 7/4 – 11/8 otonal 1/1 – 5/4 – 11/8 – 7/4 1/1 – 11/10 – 7/5 – 8/5 1/1 – 14/11 – 16/11 – 20/11 1/1 – 8/7 – 10/7 – 11/7
57 0 – 8 – 10 – 18 1 – 14/9 – 7/4 – 11/8 mothwellsmic 1/1 – 11/8 – 14/9 – 7/4 1/1 – 8/7 – 14/11 – 16/11 1/1 – 9/8 – 9/7 – 7/4 1/1 – 8/7 – 11/7 – 16/9
58 0 – 9 – 10 – 18 1 – 7/6 – 7/4 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 – 7/4 1/1 – 7/6 – 3/2 – 12/7 1/1 – 14/11 – 16/11 – 12/7 1/1 – 8/7 – 4/3 – 11/7
59 0 – 4 – 14 – 18 1 – 5/4 – 11/10 – 11/8 valinorsmic 1/1 – 11/10 – 5/4 – 11/8 1/1 – 8/7 – 5/4 – 20/11 1/1 – 11/10 – 8/5 – 7/4 1/1 – 16/11 – 8/5 – 20/11
60 0 – 8 – 14 – 18 1 – 11/7 – 11/10 – 11/8 utonal 1/1 – 11/10 – 11/8 – 11/7 1/1 – 5/4 – 10/7 – 20/11 1/1 – 8/7 – 16/11 – 8/5 1/1 – 14/11 – 7/5 – 7/4
61 0 – 10 – 14 – 18 1 – 7/4 – 11/10 – 11/8 minerva 1/1 – 11/10 – 11/8 – 7/4 1/1 – 5/4 – 8/5 – 20/11 1/1 – 14/11 – 16/11 – 8/5 1/1 – 8/7 – 5/4 – 11/7
62 0 – 2 – 16 – 18 1 – 9/8 – 11/9 – 11/8 didymic 1/1 – 9/8 – 11/9 – 11/8 1/1 – 11/10 – 11/9 – 16/9 1/1 – 9/8 – 18/11 – 20/11 1/1 – 16/11 – 18/11 – 16/9
63 0 – 8 – 16 – 18 1 – 11/7 – 11/9 – 11/8 utonal 1/1 – 11/9 – 11/8 – 11/7 1/1 – 9/8 – 9/7 – 18/11 1/1 – 8/7 – 16/11 – 16/9 1/1 – 14/11 – 14/9 – 7/4
64 0 – 10 – 16 – 18 1 – 7/4 – 11/9 – 11/8 euterpe 1/1 – 11/9 – 11/8 – 7/4 1/1 – 9/8 – 10/7 – 18/11 1/1 – 14/11 – 16/11 – 16/9 1/1 – 8/7 – 7/5 – 11/7
65 0 – 14 – 16 – 18 1 – 11/10 – 11/9 – 11/8 utonal 1/1 – 11/10 – 11/9 – 11/8 1/1 – 10/9 – 5/4 – 20/11 1/1 – 9/8 – 18/11 – 9/5 1/1 – 16/11 – 8/5 – 16/9
66 0 – 1 – 17 – 18 1 – 3/2 – 11/6 – 11/8 ambitonal 1/1 – 11/8 – 3/2 – 11/6 1/1 – 12/11 – 4/3 – 16/11 1/1 – 11/9 – 4/3 – 11/6 1/1 – 12/11 – 3/2 – 18/11
67 0 – 8 – 17 – 18 1 – 11/7 – 11/6 – 11/8 utonal 1/1 – 11/8 – 11/7 – 11/6 1/1 – 8/7 – 4/3 – 16/11 1/1 – 7/6 – 14/11 – 7/4 1/1 – 12/11 – 3/2 – 12/7
68 0 – 9 – 17 – 18 1 – 7/6 – 11/6 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 – 11/6 1/1 – 7/6 – 11/7 – 12/7 1/1 – 4/3 – 16/11 – 12/7 1/1 – 12/11 – 14/11 – 3/2
69 0 – 14 – 17 – 18 1 – 11/10 – 11/6 – 11/8 utonal 1/1 – 11/10 – 11/8 – 11/6 1/1 – 5/4 – 5/3 – 20/11 1/1 – 4/3 – 16/11 – 8/5 1/1 – 12/11 – 6/5 – 3/2
70 0 – 16 – 17 – 18 1 – 11/9 – 11/6 – 11/8 utonal 1/1 – 11/9 – 11/8 – 11/6 1/1 – 9/8 – 3/2 – 18/11 1/1 – 4/3 – 16/11 – 16/9 1/1 – 12/11 – 4/3 – 3/2

Pentads

Chord Transversal Type As generated First inversion Second inversion Third inversion Fourth inversion
0 – 1 – 2 – 3 – 4 1 – 3/2 – 9/8 – 5/3 – 5/4 didymic 1/1 – 9/8 – 5/4 – 3/2 – 5/3 1/1 – 10/9 – 4/3 – 3/2 – 16/9 1/1 – 6/5 – 4/3 – 8/5 – 9/5 1/1 – 10/9 – 4/3 – 3/2 – 5/3 1/1 – 6/5 – 4/3 – 3/2 – 9/5
0 – 2 – 3 – 4 – 6 1 – 9/8 – 5/3 – 5/4 – 7/5 erato 1/1 – 9/8 – 5/4 – 7/5 – 5/3 1/1 – 10/9 – 5/4 – 3/2 – 16/9 1/1 – 10/9 – 4/3 – 8/5 – 9/5 1/1 – 6/5 – 10/7 – 8/5 – 9/5 1/1 – 6/5 – 4/3 – 3/2 – 5/3
0 – 2 – 4 – 6 – 8 1 – 9/8 – 5/4 – 7/5 – 14/9 erato 1/1 – 9/8 – 5/4 – 7/5 – 14/9 1/1 – 10/9 – 5/4 – 7/5 – 16/9 1/1 – 10/9 – 5/4 – 8/5 – 9/5 1/1 – 10/9 – 10/7 – 8/5 – 9/5 1/1 – 9/7 – 10/7 – 8/5 – 9/5
0 – 1 – 2 – 4 – 10 1 – 3/2 – 9/8 – 5/4 – 7/4 otonal 1/1 – 9/8 – 5/4 – 3/2 – 7/4 1/1 – 10/9 – 4/3 – 14/9 – 16/9 1/1 – 6/5 – 7/5 – 8/5 – 9/5 1/1 – 7/6 – 4/3 – 3/2 – 5/3 1/1 – 8/7 – 9/7 – 10/7 – 12/7
0 – 2 – 4 – 6 – 10 1 – 9/8 – 5/4 – 7/5 – 7/4 erato 1/1 – 9/8 – 5/4 – 7/5 – 7/4 1/1 – 10/9 – 5/4 – 14/9 – 16/9 1/1 – 10/9 – 7/5 – 8/5 – 9/5 1/1 – 5/4 – 10/7 – 8/5 – 9/5 1/1 – 8/7 – 9/7 – 10/7 – 8/5
0 – 2 – 4 – 8 – 10 1 – 9/8 – 5/4 – 14/9 – 7/4 erato 1/1 – 9/8 – 5/4 – 14/9 – 7/4 1/1 – 10/9 – 7/5 – 14/9 – 16/9 1/1 – 5/4 – 7/5 – 8/5 – 9/5 1/1 – 9/8 – 9/7 – 10/7 – 8/5 1/1 – 8/7 – 9/7 – 10/7 – 16/9
0 – 2 – 6 – 8 – 10 1 – 9/8 – 7/5 – 14/9 – 7/4 erato 1/1 – 9/8 – 7/5 – 14/9 – 7/4 1/1 – 5/4 – 7/5 – 14/9 – 16/9 1/1 – 10/9 – 5/4 – 10/7 – 8/5 1/1 – 9/8 – 9/7 – 10/7 – 9/5 1/1 – 8/7 – 9/7 – 8/5 – 16/9
0 – 4 – 6 – 8 – 10 1 – 5/4 – 7/5 – 14/9 – 7/4 erato 1/1 – 5/4 – 7/5 – 14/9 – 7/4 1/1 – 9/8 – 5/4 – 7/5 – 8/5 1/1 – 10/9 – 5/4 – 10/7 – 9/5 1/1 – 9/8 – 9/7 – 8/5 – 9/5 1/1 – 8/7 – 10/7 – 8/5 – 16/9
0 – 6 – 8 – 9 – 10 1 – 7/5 – 14/9 – 7/6 – 7/4 utonal 1/1 – 7/6 – 7/5 – 14/9 – 7/4 1/1 – 6/5 – 4/3 – 3/2 – 12/7 1/1 – 10/9 – 5/4 – 10/7 – 5/3 1/1 – 9/8 – 9/7 – 3/2 – 9/5 1/1 – 8/7 – 4/3 – 8/5 – 16/9
0 – 4 – 6 – 8 – 14 1 – 5/4 – 7/5 – 14/9 – 11/10 meantone 1/1 – 11/10 – 5/4 – 7/5 – 14/9 1/1 – 9/8 – 14/11 – 10/7 – 20/11 1/1 – 10/9 – 5/4 – 8/5 – 7/4 1/1 – 10/9 – 10/7 – 11/7 – 9/5 1/1 – 9/7 – 7/5 – 8/5 – 9/5
0 – 4 – 6 – 10 – 14 1 – 5/4 – 7/5 – 7/4 – 11/10 minerva 1/1 – 11/10 – 5/4 – 7/5 – 7/4 1/1 – 9/8 – 14/11 – 8/5 – 20/11 1/1 – 10/9 – 7/5 – 8/5 – 7/4 1/1 – 5/4 – 10/7 – 11/7 – 9/5 1/1 – 8/7 – 5/4 – 10/7 – 8/5
0 – 4 – 8 – 10 – 14 1 – 5/4 – 14/9 – 7/4 – 11/10 minerva 1/1 – 11/10 – 5/4 – 14/9 – 7/4 1/1 – 9/8 – 7/5 – 8/5 – 20/11 1/1 – 5/4 – 7/5 – 8/5 – 7/4 1/1 – 9/8 – 9/7 – 7/5 – 8/5 1/1 – 8/7 – 5/4 – 10/7 – 16/9
0 – 6 – 8 – 10 – 14 1 – 7/5 – 14/9 – 7/4 – 11/10 meantone 1/1 – 11/10 – 7/5 – 14/9 – 7/4 1/1 – 14/11 – 7/5 – 8/5 – 20/11 1/1 – 10/9 – 5/4 – 10/7 – 11/7 1/1 – 9/8 – 9/7 – 7/5 – 9/5 1/1 – 8/7 – 5/4 – 8/5 – 16/9
0 – 2 – 6 – 8 – 16 1 – 9/8 – 7/5 – 14/9 – 11/9 meantone 1/1 – 9/8 – 11/9 – 7/5 – 14/9 1/1 – 11/10 – 5/4 – 7/5 – 16/9 1/1 – 8/7 – 14/11 – 18/11 – 20/11 1/1 – 10/9 – 10/7 – 8/5 – 7/4 1/1 – 9/7 – 10/7 – 11/7 – 9/5
0 – 2 – 6 – 10 – 16 1 – 9/8 – 7/5 – 7/4 – 11/9 meantone 1/1 – 9/8 – 11/9 – 7/5 – 7/4 1/1 – 11/10 – 5/4 – 14/9 – 16/9 1/1 – 8/7 – 10/7 – 18/11 – 20/11 1/1 – 5/4 – 10/7 – 8/5 – 7/4 1/1 – 8/7 – 9/7 – 7/5 – 8/5
0 – 2 – 8 – 10 – 16 1 – 9/8 – 14/9 – 7/4 – 11/9 euterpe 1/1 – 9/8 – 11/9 – 14/9 – 7/4 1/1 – 11/10 – 7/5 – 14/9 – 16/9 1/1 – 14/11 – 10/7 – 18/11 – 20/11 1/1 – 9/8 – 9/7 – 10/7 – 11/7 1/1 – 8/7 – 9/7 – 7/5 – 16/9
0 – 6 – 8 – 10 – 16 1 – 7/5 – 14/9 – 7/4 – 11/9 euterpe 1/1 – 11/9 – 7/5 – 14/9 – 7/4 1/1 – 8/7 – 14/11 – 10/7 – 18/11 1/1 – 10/9 – 5/4 – 10/7 – 7/4 1/1 – 9/8 – 9/7 – 11/7 – 9/5 1/1 – 8/7 – 7/5 – 8/5 – 16/9
0 – 6 – 8 – 14 – 16 1 – 7/5 – 14/9 – 11/10 – 11/9 euterpe 1/1 – 11/10 – 11/9 – 7/5 – 14/9 1/1 – 10/9 – 14/11 – 10/7 – 20/11 1/1 – 8/7 – 14/11 – 18/11 – 9/5 1/1 – 10/9 – 10/7 – 11/7 – 7/4 1/1 – 9/7 – 7/5 – 11/7 – 9/5
0 – 6 – 10 – 14 – 16 1 – 7/5 – 7/4 – 11/10 – 11/9 meantone 1/1 – 11/10 – 11/9 – 7/5 – 7/4 1/1 – 10/9 – 14/11 – 8/5 – 20/11 1/1 – 8/7 – 10/7 – 18/11 – 9/5 1/1 – 5/4 – 10/7 – 11/7 – 7/4 1/1 – 8/7 – 5/4 – 7/5 – 8/5
0 – 8 – 10 – 14 – 16 1 – 14/9 – 7/4 – 11/10 – 11/9 meantone 1/1 – 11/10 – 11/9 – 14/9 – 7/4 1/1 – 10/9 – 7/5 – 8/5 – 20/11 1/1 – 14/11 – 10/7 – 18/11 – 9/5 1/1 – 9/8 – 9/7 – 7/5 – 11/7 1/1 – 8/7 – 5/4 – 7/5 – 16/9
0 – 1 – 3 – 9 – 17 1 – 3/2 – 5/3 – 7/6 – 11/6 otonal 1/1 – 7/6 – 3/2 – 5/3 – 11/6 1/1 – 9/7 – 10/7 – 11/7 – 12/7 1/1 – 10/9 – 11/9 – 4/3 – 14/9 1/1 – 11/10 – 6/5 – 7/5 – 9/5 1/1 – 12/11 – 14/11 – 18/11 – 20/11
0 – 8 – 14 – 16 – 17 1 – 11/7 – 11/10 – 11/9 – 11/6 utonal 1/1 – 11/10 – 11/9 – 11/7 – 11/6 1/1 – 10/9 – 10/7 – 5/3 – 20/11 1/1 – 9/7 – 3/2 – 18/11 – 9/5 1/1 – 7/6 – 14/11 – 7/5 – 14/9 1/1 – 12/11 – 6/5 – 4/3 – 12/7
0 – 1 – 2 – 4 – 18 1 – 3/2 – 9/8 – 5/4 – 11/8 otonal 1/1 – 9/8 – 5/4 – 11/8 – 3/2 1/1 – 10/9 – 11/9 – 4/3 – 16/9 1/1 – 11/10 – 6/5 – 8/5 – 9/5 1/1 – 12/11 – 16/11 – 18/11 – 20/11 1/1 – 4/3 – 3/2 – 5/3 – 11/6
0 – 2 – 4 – 8 – 18 1 – 9/8 – 5/4 – 14/9 – 11/8 meantone 1/1 – 9/8 – 5/4 – 11/8 – 14/9 1/1 – 10/9 – 11/9 – 7/5 – 16/9 1/1 – 11/10 – 5/4 – 8/5 – 9/5 1/1 – 8/7 – 16/11 – 18/11 – 20/11 1/1 – 9/7 – 10/7 – 8/5 – 7/4
0 – 1 – 2 – 10 – 18 1 – 3/2 – 9/8 – 7/4 – 11/8 otonal 1/1 – 9/8 – 11/8 – 3/2 – 7/4 1/1 – 11/9 – 4/3 – 14/9 – 16/9 1/1 – 12/11 – 14/11 – 16/11 – 18/11 1/1 – 7/6 – 4/3 – 3/2 – 11/6 1/1 – 8/7 – 9/7 – 11/7 – 12/7
0 – 1 – 4 – 10 – 18 1 – 3/2 – 5/4 – 7/4 – 11/8 otonal 1/1 – 5/4 – 11/8 – 3/2 – 7/4 1/1 – 11/10 – 6/5 – 7/5 – 8/5 1/1 – 12/11 – 14/11 – 16/11 – 20/11 1/1 – 7/6 – 4/3 – 5/3 – 11/6 1/1 – 8/7 – 10/7 – 11/7 – 12/7
0 – 2 – 4 – 10 – 18 1 – 9/8 – 5/4 – 7/4 – 11/8 otonal 1/1 – 9/8 – 5/4 – 11/8 – 7/4 1/1 – 10/9 – 11/9 – 14/9 – 16/9 1/1 – 11/10 – 7/5 – 8/5 – 9/5 1/1 – 14/11 – 16/11 – 18/11 – 20/11 1/1 – 8/7 – 9/7 – 10/7 – 11/7
0 – 2 – 8 – 10 – 18 1 – 9/8 – 14/9 – 7/4 – 11/8 euterpe 1/1 – 9/8 – 11/8 – 14/9 – 7/4 1/1 – 11/9 – 7/5 – 14/9 – 16/9 1/1 – 8/7 – 14/11 – 16/11 – 18/11 1/1 – 9/8 – 9/7 – 10/7 – 7/4 1/1 – 8/7 – 9/7 – 11/7 – 16/9
0 – 4 – 8 – 10 – 18 1 – 5/4 – 14/9 – 7/4 – 11/8 minerva 1/1 – 5/4 – 11/8 – 14/9 – 7/4 1/1 – 11/10 – 5/4 – 7/5 – 8/5 1/1 – 8/7 – 14/11 – 16/11 – 20/11 1/1 – 9/8 – 9/7 – 8/5 – 7/4 1/1 – 8/7 – 10/7 – 11/7 – 16/9
0 – 1 – 9 – 10 – 18 1 – 3/2 – 7/6 – 7/4 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 – 3/2 – 7/4 1/1 – 7/6 – 9/7 – 3/2 – 12/7 1/1 – 12/11 – 14/11 – 16/11 – 12/7 1/1 – 7/6 – 4/3 – 14/9 – 11/6 1/1 – 8/7 – 4/3 – 11/7 – 12/7
0 – 8 – 9 – 10 – 18 1 – 14/9 – 7/6 – 7/4 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 – 14/9 – 7/4 1/1 – 7/6 – 4/3 – 3/2 – 12/7 1/1 – 8/7 – 14/11 – 16/11 – 12/7 1/1 – 9/8 – 9/7 – 3/2 – 7/4 1/1 – 8/7 – 4/3 – 11/7 – 16/9
0 – 4 – 8 – 14 – 18 1 – 5/4 – 14/9 – 11/10 – 11/8 minerva 1/1 – 11/10 – 5/4 – 11/8 – 14/9 1/1 – 9/8 – 5/4 – 10/7 – 20/11 1/1 – 11/10 – 5/4 – 8/5 – 7/4 1/1 – 8/7 – 16/11 – 8/5 – 20/11 1/1 – 9/7 – 7/5 – 8/5 – 7/4
0 – 4 – 10 – 14 – 18 1 – 5/4 – 7/4 – 11/10 – 11/8 minerva 1/1 – 11/10 – 5/4 – 11/8 – 7/4 1/1 – 9/8 – 5/4 – 8/5 – 20/11 1/1 – 11/10 – 7/5 – 8/5 – 7/4 1/1 – 14/11 – 16/11 – 8/5 – 20/11 1/1 – 8/7 – 5/4 – 10/7 – 11/7
0 – 8 – 10 – 14 – 18 1 – 14/9 – 7/4 – 11/10 – 11/8 minerva 1/1 – 11/10 – 11/8 – 14/9 – 7/4 1/1 – 5/4 – 7/5 – 8/5 – 20/11 1/1 – 8/7 – 14/11 – 16/11 – 8/5 1/1 – 9/8 – 9/7 – 7/5 – 7/4 1/1 – 8/7 – 5/4 – 11/7 – 16/9
0 – 2 – 8 – 16 – 18 1 – 9/8 – 14/9 – 11/9 – 11/8 euterpe 1/1 – 9/8 – 11/9 – 11/8 – 14/9 1/1 – 11/10 – 11/9 – 7/5 – 16/9 1/1 – 9/8 – 14/11 – 18/11 – 20/11 1/1 – 8/7 – 16/11 – 18/11 – 16/9 1/1 – 9/7 – 10/7 – 11/7 – 7/4
0 – 2 – 10 – 16 – 18 1 – 9/8 – 7/4 – 11/9 – 11/8 euterpe 1/1 – 9/8 – 11/9 – 11/8 – 7/4 1/1 – 11/10 – 11/9 – 14/9 – 16/9 1/1 – 9/8 – 10/7 – 18/11 – 20/11 1/1 – 14/11 – 16/11 – 18/11 – 16/9 1/1 – 8/7 – 9/7 – 7/5 – 11/7
0 – 8 – 10 – 16 – 18 1 – 14/9 – 7/4 – 11/9 – 11/8 euterpe 1/1 – 11/9 – 11/8 – 14/9 – 7/4 1/1 – 9/8 – 14/11 – 10/7 – 18/11 1/1 – 8/7 – 14/11 – 16/11 – 16/9 1/1 – 9/8 – 9/7 – 11/7 – 7/4 1/1 – 8/7 – 7/5 – 11/7 – 16/9
0 – 8 – 14 – 16 – 18 1 – 11/7 – 11/10 – 11/9 – 11/8 utonal 1/1 – 11/10 – 11/9 – 11/8 – 11/7 1/1 – 10/9 – 5/4 – 10/7 – 20/11 1/1 – 9/8 – 9/7 – 18/11 – 9/5 1/1 – 8/7 – 16/11 – 8/5 – 16/9 1/1 – 14/11 – 7/5 – 14/9 – 7/4
0 – 10 – 14 – 16 – 18 1 – 7/4 – 11/10 – 11/9 – 11/8 meantone 1/1 – 11/10 – 11/9 – 11/8 – 7/4 1/1 – 10/9 – 5/4 – 8/5 – 20/11 1/1 – 9/8 – 10/7 – 18/11 – 9/5 1/1 – 14/11 – 16/11 – 8/5 – 16/9 1/1 – 8/7 – 5/4 – 7/5 – 11/7
0 – 1 – 9 – 17 – 18 1 – 3/2 – 7/6 – 11/6 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 – 3/2 – 11/6 1/1 – 7/6 – 9/7 – 11/7 – 12/7 1/1 – 12/11 – 4/3 – 16/11 – 12/7 1/1 – 11/9 – 4/3 – 14/9 – 11/6 1/1 – 12/11 – 14/11 – 3/2 – 18/11
0 – 8 – 9 – 17 – 18 1 – 14/9 – 7/6 – 11/6 – 11/8 mothwellsmic 1/1 – 7/6 – 11/8 – 14/9 – 11/6 1/1 – 7/6 – 4/3 – 11/7 – 12/7 1/1 – 8/7 – 4/3 – 16/11 – 12/7 1/1 – 7/6 – 9/7 – 3/2 – 7/4 1/1 – 12/11 – 14/11 – 3/2 – 12/7
0 – 8 – 14 – 17 – 18 1 – 11/7 – 11/10 – 11/6 – 11/8 utonal 1/1 – 11/10 – 11/8 – 11/7 – 11/6 1/1 – 5/4 – 10/7 – 5/3 – 20/11 1/1 – 8/7 – 4/3 – 16/11 – 8/5 1/1 – 7/6 – 14/11 – 7/5 – 7/4 1/1 – 12/11 – 6/5 – 3/2 – 12/7
0 – 8 – 16 – 17 – 18 1 – 11/7 – 11/9 – 11/6 – 11/8 utonal 1/1 – 11/9 – 11/8 – 11/7 – 11/6 1/1 – 9/8 – 9/7 – 3/2 – 18/11 1/1 – 8/7 – 4/3 – 16/11 – 16/9 1/1 – 7/6 – 14/11 – 14/9 – 7/4 1/1 – 12/11 – 4/3 – 3/2 – 12/7
0 – 14 – 16 – 17 – 18 1 – 11/10 – 11/9 – 11/6 – 11/8 utonal 1/1 – 11/10 – 11/9 – 11/8 – 11/6 1/1 – 10/9 – 5/4 – 5/3 – 20/11 1/1 – 9/8 – 3/2 – 18/11 – 9/5 1/1 – 4/3 – 16/11 – 8/5 – 16/9 1/1 – 12/11 – 6/5 – 4/3 – 3/2

Hexads

Number Chord Transversal Type
1 0 – 2 – 4 – 6 – 8 – 10 1 – 9/8 – 5/4 – 7/5 – 14/9 – 7/4 erato
2 0 – 4 – 6 – 8 – 10 – 14 1 – 5/4 – 7/5 – 14/9 – 7/4 – 11/10 meantone
3 0 – 2 – 6 – 8 – 10 – 16 1 – 9/8 – 7/5 – 14/9 – 7/4 – 11/9 meantone
4 0 – 6 – 8 – 10 – 14 – 16 1 – 7/5 – 14/9 – 7/4 – 11/10 – 11/9 meantone
5 0 – 1 – 2 – 4 – 10 – 18 1 – 3/2 – 9/8 – 5/4 – 7/4 – 11/8 otonal
6 0 – 2 – 4 – 8 – 10 – 18 1 – 9/8 – 5/4 – 14/9 – 7/4 – 11/8 meantone
7 0 – 4 – 8 – 10 – 14 – 18 1 – 5/4 – 14/9 – 7/4 – 11/10 – 11/8 minerva
8 0 – 2 – 8 – 10 – 16 – 18 1 – 9/8 – 14/9 – 7/4 – 11/9 – 11/8 euterpe
9 0 – 8 – 10 – 14 – 16 – 18 1 – 14/9 – 7/4 – 11/10 – 11/9 – 11/8- meantone
10 0 – 8 – 14 – 16 – 17 – 18 1 – 11/7 – 11/10 – 11/9 – 11/6 – 11/8 utonal