Tags: Mobile edit Mobile web edit |
|
Line 1: |
Line 1: |
| {{Infobox ET}} | | {{Infobox ET}} |
| '''[[Ed5|Division of the 5th harmonic]] into 56 equal parts''' (56ed5) is related to [[24edo|24 edo]], but with the 5/1 rather than the 2/1 being just. The octave is about 5.8656 cents compressed and the step size is about 49.7556 cents. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning is also a [[hyperpyth]], tempering out 135/133, 171/169, 225/221, and 1521/1445 in the patent val.
| | {{ED intro}} |
|
| |
|
| ==Intervals== | | == Theory == |
| | 56ed5 is related to 24edo, but with the 5th harmonic rather than the [[2/1|octave]] being just. The octave is about 5.87 cents compressed. This tuning has a [[meantone]] fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning is also a [[hyperpyth]], tempering out 135/133, 171/169, 225/221, and 1521/1445 in the patent val. |
| | |
| | === Harmonics === |
| | {{Harmonics in equal|56|5|1|intervals=integer|columns=11}} |
| | {{Harmonics in equal|56|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 56ed5 (continued)}} |
| | |
| | === Subsets and supersets === |
| | Since 56 factors into primes as {{nowrap| 2<sup>3</sup> × 7 }}, 56ed5 contains subset ed5's {{EDs|equave=5| 2, 4, 7, 8, 14, and 28 }}. |
| | |
| | == Intervals == |
| {| class="wikitable mw-collapsible" | | {| class="wikitable mw-collapsible" |
| |+ Intervals of 56ed5 | | |+ Intervals of 56ed5 |
| |- | | |- |
| ! | degree | | ! # |
| ! | cents value | | ! Cents |
| ! | corresponding <br>JI intervals | | ! Approximated ratios |
| ! | comments
| |
| |- | | |- |
| | | 0
| | | 0 |
| | | 0.0000
| | | 0.0 |
| | | '''exact [[1/1]]''' | | | 1/1 |
| | |
| |
| |- | | |- |
| | | 1
| | | 1 |
| | | 49.7556
| | | 49.8 |
| | | 36/35, 35/34 | | | 35/34, 36/35 |
| | |
| |
| |- | | |- |
| | | 2
| | | 2 |
| | | 99.5112
| | | 99.5 |
| | | [[18/17]] | | | 18/17 |
| | |
| |
| |- | | |- |
| | | 3
| | | 3 |
| | | 149.2668
| | | 149.3 |
| | | [[12/11]] | | | 12/11 |
| | |
| |
| |- | | |- |
| | | 4
| | | 4 |
| | | 199.0224
| | | 199.0 |
| | | [[55/49]] | | | 55/49 |
| | |
| |
| |- | | |- |
| | | 5
| | | 5 |
| | | 248.7780
| | | 248.8 |
| | | [[15/13]] | | | 15/13 |
| | |
| |
| |- | | |- |
| | | 6
| | | 6 |
| | | 298.5336
| | | 298.5 |
| | | [[19/16]] | | | 19/16 |
| | |
| |
| |- | | |- |
| | | 7
| | | 7 |
| | | 348.2892
| | | 348.3 |
| | | [[11/9]] | | | 11/9 |
| | |
| |
| |- | | |- |
| | | 8
| | | 8 |
| | | 398.0448
| | | 398.0 |
| | | 34/27 | | | 5/4 |
| | | pseudo-[[5/4]]
| |
| |- | | |- |
| | | 9
| | | 9 |
| | | 447.8004
| | | 447.8 |
| | | 35/27
| | | 35/27 |
| | |
| |
| |- | | |- |
| | | 10
| | | 10 |
| | | 497.5560
| | | 497.6 |
| | | [[4/3]] | | | 4/3 |
| | |
| |
| |- | | |- |
| | | 11
| | | 11 |
| | | 547.3116
| | | 547.3 |
| | | 70/51
| | | 70/51 |
| | |
| |
| |- | | |- |
| | | 12
| | | 12 |
| | | 597.0672
| | | 597.1 |
| | | [[24/17]] | | | 24/17 |
| | |
| |
| |- | | |- |
| | | 13
| | | 13 |
| | | 646.8228
| | | 646.8 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 14
| | | 14 |
| | | 696.5784
| | | 696.6 |
| | |
| | | 3/2 |
| | | meantone fifth <br>(pseudo-[[3/2]]) | |
| |- | | |- |
| | | 15
| | | 15 |
| | | 746.3340
| | | 746.3 |
| | | [[20/13]] | | | 20/13 |
| | |
| |
| |- | | |- |
| | | 16
| | | 16 |
| | | 796.0896
| | | 796.1 |
| | | [[19/12]] | | | 19/12 |
| | |
| |
| |- | | |- |
| | | 17
| | | 17 |
| | | 845.8452
| | | 845.8 |
| | | 44/27, 75/46
| | | 44/27, 75/46 |
| | |
| |
| |- | | |- |
| | | 18
| | | 18 |
| | | 895.6008
| | | 895.6 |
| | | 57/34 | | | 5/3 |
| | | pseudo-[[5/3]]
| |
| |- | | |- |
| | | 19
| | | 19 |
| | | 945.3564
| | | 945.4 |
| | | [[19/11]] | | | 19/11 |
| | |
| |
| |- | | |- |
| | | 20
| | | 20 |
| | | 995.1120
| | | 995.1 |
| | | [[16/9]] | | | 9/5, 16/9 |
| | | pseudo-[[9/5]]
| |
| |- | | |- |
| | | 21
| | | 21 |
| | | 1044.8676
| | | 1044.9 |
| | | 64/35
| | | 64/35 |
| | |
| |
| |- | | |- |
| | | 22
| | | 22 |
| | | 1094.6232
| | | 1094.6 |
| | | [[32/17]] | | | 32/17 |
| | |
| |
| |- | | |- |
| | | 23
| | | 23 |
| | | 1144.3788
| | | 1144.4 |
| | |
| | | |
| | |
| |
| |- | | |- |
| | | 24
| | | 24 |
| | | 1194.1344
| | | 1194.1 |
| | | 255/128 | | | 2/1 |
| | | pseudo-[[octave]]
| |
| |- | | |- |
| | | 25
| | | 25 |
| | | 1243.8901
| | | 1243.9 |
| | | 80/39, 39/19 | | | 39/19, 80/39 |
| | |
| |
| |- | | |- |
| | | 26
| | | 26 |
| | | 1293.6457
| | | 1293.6 |
| | | [[19/18|19/9]]
| | | 19/9 |
| | |
| |
| |- | | |- |
| | | 27
| | | 27 |
| | | 1343.4013
| | | 1343.4 |
| | | 50/23
| | | 50/23 |
| | |
| |
| |- | | |- |
| | | 28
| | | 28 |
| | | 1393.1569
| | | 1393.2 |
| | | [[19/17|38/17]], 85/38
| | | 38/17, 85/38 |
| | | meantone major second plus an octave
| |
| |- | | |- |
| | | 29
| | | 29 |
| | | 1442.9125
| | | 1442.9 |
| | | 23/10
| | | 23/10 |
| | |
| |
| |- | | |- |
| | | 30
| | | 30 |
| | | 1492.6681
| | | 1492.7 |
| | | 45/19
| | | 45/19 |
| | |
| |
| |- | | |- |
| | | 31
| | | 31 |
| | | 1542.4237
| | | 1542.4 |
| | | 39/16
| | | 39/16 |
| | |
| |
| |- | | |- |
| | | 32
| | | 32 |
| | | 1592.1793
| | | 1592.2 |
| | | 128/51
| | | 5/2 |
| | | pseudo-[[5/2]] | |
| |- | | |- |
| | | 33
| | | 33 |
| | | 1641.9349
| | | 1641.9 |
| | |
| | | 13/5 |
| | | pseudo-[[13/5]] | |
| |- | | |- |
| | | 34
| | | 34 |
| | | 1691.6905
| | | 1691.7 |
| | | 85/32
| | | 85/32 |
| | |
| |
| |- | | |- |
| | | 35
| | | 35 |
| | | 1741.4461
| | | 1741.4 |
| | | 175/64
| | | 175/64 |
| | |
| |
| |- | | |- |
| | | 36
| | | 36 |
| | | 1791.2017
| | | 1791.2 |
| | | [[45/32|45/16]]
| | | 45/16 |
| | |
| |
| |- | | |- |
| | | 37
| | | 37 |
| | | 1840.9573 | | | 1841.0 |
| | | 55/19
| | | 55/19 |
| | |
| |
| |- | | |- |
| | | 38
| | | 38 |
| | | 1890.7129
| | | 1890.7 |
| | | 170/57 | | | 3/1 |
| | | pseudo-[[3/1]]
| |
| |- | | |- |
| | | 39
| | | 39 |
| | | 1940.4685
| | | 1940.5 |
| | | 46/15, 135/44
| | | 46/15, 135/44 |
| | |
| |
| |- | | |- |
| | | 40
| | | 40 |
| | | 1990.2241
| | | 1990.2 |
| | | [[30/19|60/19]]
| | | 60/19 |
| | |
| |
| |- | | |- |
| | | 41
| | | 41 |
| | | 2039.9797 | | | 2040.0 |
| | | [[13/4]] | | | 13/4 |
| | |
| |
| |- | | |- |
| | | 42
| | | 42 |
| | | 2089.7353
| | | 2089.7 |
| | |
| | | 10/3 |
| | | meantone major sixth plus an octave <br>(pseudo-[[10/3]]) | |
| |- | | |- |
| | | 43
| | | 43 |
| | | 2139.4909
| | | 2139.5 |
| | |
| | | 17/5 |
| | | pseudo-[[17/10|17/5]]
| |
| |- | | |- |
| | | 44
| | | 44 |
| | | 2189.2465
| | | 2189.2 |
| | | 85/24
| | | 85/24 |
| | |
| |
| |- | | |- |
| | | 45
| | | 45 |
| | | 2239.0021
| | | 2239.0 |
| | | 51/14
| | | 51/14 |
| | |
| |
| |- | | |- |
| | | 46
| | | 46 |
| | | 2288.7577
| | | 2288.8 |
| | | [[15/4]] | | | 15/4, 19/5 |
| | | pseudo-[[19/10|19/5]]
| |
| |- | | |- |
| | | 47
| | | 47 |
| | | 2338.5133
| | | 2338.5 |
| | | [[27/14|27/7]]
| | | 27/7 |
| | |
| |
| |- | | |- |
| | | 48
| | | 48 |
| | | 2388.2689
| | | 2388.3 |
| | | 135/34 | | | 4/1 |
| | | pseudo-[[4/1]]
| |
| |- | | |- |
| | | 49
| | | 49 |
| | | 2438.0245
| | | 2438.0 |
| | | [[45/44|45/11]]
| | | 45/11 |
| | |
| |
| |- | | |- |
| | | 50
| | | 50 |
| | | 2487.7801
| | | 2487.8 |
| | | [[20/19|80/19]]
| | | 21/5 |
| | | pseudo-[[21/20|21/5]]
| |
| |- | | |- |
| | | 51
| | | 51 |
| | | 2537.5357
| | | 2537.5 |
| | | [[13/3]] | | | 13/3 |
| | |
| |
| |- | | |- |
| | | 52
| | | 52 |
| | | 2587.2913
| | | 2587.3 |
| | | [[49/44|49/11]]
| | | 49/11 |
| | |
| |
| |- | | |- |
| | | 53
| | | 53 |
| | | 2637.0469
| | | 2637.0 |
| | | [[55/48|55/12]]
| | | 55/12 |
| | |
| |
| |- | | |- |
| | | 54
| | | 54 |
| | | 2686.8025
| | | 2686.8 |
| | | 85/18
| | | 85/18 |
| | |
| |
| |- | | |- |
| | | 55
| | | 55 |
| | | 2736.5581
| | | 2736.6 |
| | | [[17/14|34/7]]
| | | 34/7 |
| | |
| |
| |- | | |- |
| | | 56
| | | 56 |
| | | 2786.3137
| | | 2786.3 |
| | | '''exact [[5/1]]''' | | | 5/1 |
| | | just major third plus two octaves
| |
| |} | | |} |
|
| |
| == Harmonics ==
| |
| {{Harmonics in equal
| |
| | steps = 56
| |
| | num = 5
| |
| | denom = 1
| |
| }}
| |
| {{Harmonics in equal
| |
| | steps = 56
| |
| | num = 5
| |
| | denom = 1
| |
| | start = 12
| |
| | collapsed = 1
| |
| }}
| |
|
| |
| {{todo|expand}}
| |