Height: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>guest
**Imported revision 362749812 - Original comment: **
Sintel (talk | contribs)
equivalence section: no need to talk about p-adic valuations here
 
(54 intermediate revisions by 12 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The '''height''' is a mathematical tool to measure the [[complexity]] of [[JI]] [[interval]]s.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-09-07 03:49:45 UTC</tt>.<br>
: The original revision id was <tt>362749812</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:=
A **height** is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the (non-zero) rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.


A height function H(q) on the rationals q should fulfill the following criteria:
== Definition ==
# Given any constant C, there are finitely many elements q such that H(q) &lt;= C.
A '''height''' is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement (see [[Wikipedia: Height function]]). For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.
# There is a unique constant K such that H(q) &gt;= K, for all q.
# H(q) = H(1/q)


Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.
A height function H(''q'') on the positive rationals ''q'' should fulfill the following criteria:


If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
# Given any constant ''C'', there are finitely many elements ''q'' such that H(''q'') ≤ ''C''.
[[math]]
# H(''q'') is bounded below by H(1), so that H(''q'') ≥ H(1) for all q.
H(q) \equiv F(H(q))
# H(''q'') = H(1) iff ''q'' = 1.
[[math]]
# H(''q'') = H(1/''q'')
# H(''q''<sup>''n''</sup>) ≥ H(''q'') for any non-negative integer ''n''.


=Examples:=  
If we have a function F which is strictly increasing on the positive reals, then F(H(''q'')) will rank elements in the same order as H(''q''). We can therefore establish the following equivalence relation:
|| Name: || H(n/d) || H(q) || H(q) simplified by equivalence relation || Abstract ||
 
|| [[Benedetti Height|Benedetti height]]
<math>\displaystyle H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</math>
(or [[Tenney Height]]) || [[math]]
 
nd
Exponentiation and logarithm are such functions commonly used for converting a height between arithmetic and logarithmic scales.
[[math]] || [[math]]
 
2^{T1(q)}
A '''semi-height''' is a function which does not obey criterion #3 above, so that there is a rational number ''q'' ≠ 1 such that H(''q'') = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be [[octave equivalence]], where two ratios ''q''<sub>1</sub> and ''q''<sub>2</sub> are considered equivalent if they differ only by factors of 2.
[[math]] || [[math]]
We can also consider other equivalences. For example, we can assume tritave equivalence by ignoring factors of 3.
T1(q)
 
[[math]] || Complexity ||
== Height versus norm ==
|| Weil Height || [[math]]
Height functions are applied to ratios, whereas norms are measurements on interval lattices [[wikipedia: embedding|embedded]] in [[wikipedia: Normed vector space|normed vector spaces]]. Some height functions are essentially norms, and they are numerically equal. For example, the [[Tenney height]] is also the Tenney norm.
max(n,d)
 
[[math]] || [[math]]
However, not all height functions are norms, and not all norms are height functions. The [[Benedetti height]] is not a norm, since it does not satisfy the condition of absolute homogeneity. The [[taxicab distance]] is not a height, since there can be infinitely many intervals below a given bound.
2^{(T1(q)+|log_2(q)|)/2}
 
[[math]] || [[math]]
== Examples of height functions ==
T1(q)+|log_2(q)|
{| class="wikitable"
[[math]] || Complexity+|Span| ||
! Name
|| Arithmetic Height || [[math]]
! Type
n+d
! H(''n''/''d'')
[[math]] || [[math]]
! H(''q'')
\frac{(q+1)}{\sqrt{q}}}2^{T1(q)/2}
! H(''q'') simplified by equivalence relation
[[math]] || [[math]]
|-
T1(q)+2log_2(q+1)-log_2(q)
| [[Benedetti height]] <br> (or [[Tenney height]])
[[math]] || Complexity+2(Tartini Tone Span)-Span ||
| Height
|| [[Kees Height]] || [[math]]
| <math>nd</math>
max(2^{-v_2(n)}n,
| <math>2^{\large{\|q\|_{T1}}}</math>
2^{-v_2(d)}d)
| <math>\|q\|_{T1}</math>
[[math]] || [[math]]
|-
2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}
| [[Wilson height]]
[[math]] || [[math]]
| Height
T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|
| <math>\text{sopfr}(n d)</math>
[[math]] || No-2's-Complexity+|No-2's-Span| ||
| <math>2^{\large{\text{sopfr}(q)}}</math>
||  ||  ||  ||   ||  ||
| <math>\text{sopfr}(q)</math>
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.
|-
| [[Weil height]]
| Height
| <math>\max \left( {n , d} \right)</math>
| <math>2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</math>
| <math>\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</math>
|-
| Arithmetic height
| Height
| <math>n + d</math>
| <math>\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| <math>\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</math>
|-
| Harmonic semi-height
| Semi-Height
| <math>\dfrac {n d} {n + d}</math>
| <math>\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| <math>\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</math>
|-
| [[Kees semi-height]]
| Semi-Height
| <math>\max \left( {2^{-v_2 \left( {n} \right)} n, 2^{-v_2 \left( {d} \right)} d} \right)</math>
| <math>2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}</math>
| <math>\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</math>
|}
 
Where ||''q''||<sub>T1</sub> is the [[Generalized Tenney norms and Tp interval space #The Tenney Norm (T1 norm)|tenney norm]] of ''q'' in monzo form, and v<sub>''p''</sub>(''q'') is the [[Wikipedia: P-adic order|''p''-adic valuation]] of ''q''.
 
The function sopfr (''nd'') is the [https://mathworld.wolfram.com/SumofPrimeFactors.html "sum of prime factors with repetition"] of ''n''·''d''. Equivalently, this is the L<sub>1</sub> norm on monzos, but where each prime is weighted by ''p'' rather than log (''p''). This is called "Wilson's Complexity" in [[John Chalmers]]'s ''Divisions of the Tetrachord''<ref>[http://lumma.org/tuning/chalmers/DivisionsOfTheTetrachord.pdf ''Division of the Tetrachord''], page 55. John Chalmers. </ref>.


Some useful identities:
Some useful identities:
[[math]]
* <math>n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}</math>
n=2^{(T1(q)+log_2(q))/2}
* <math>d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}</math>
[[math]]
* <math>n d = 2^{\|q\|_{T1}}</math>
[[math]]
 
d=2^{(T1(q)-log_2(q))/2}
Height functions can also be put on the points of [http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html projective varieties]. Since [[abstract regular temperament]]s can be identified with rational points on [[Wikipedia: Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.
[[math]]
 
[[math]]
See [[Dave Keenan & Douglas Blumeyer's guide to RTT/Alternative complexities]] for an extensive discussion of heights and semi-heights used in regular temperament theory.
nd=2^{T1(q)}
 
[[math]]</pre></div>
== History ==
<h4>Original HTML content:</h4>
The concept of height was introduced to xenharmonics by [[Gene Ward Smith]] in 2001<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_31418#31488 Yahoo! Tuning Group | ''Super Particular Stepsize'']</ref>; it comes from the mathematical field of number theory (for more information, see [[Wikipedia: Height function]]). It is not to be confused with the musical notion of [[Wikipedia: Pitch (music) #Theories of pitch perception|''pitch height'' (as opposed to ''pitch chroma'')]]<ref>Though it has also been used to refer to the size of an interval in cents. On page 23 of [https://www.plainsound.org/pdfs/JC&ToH.pdf ''John Cage and the Theor of Harmony''], Tenney writes: "The one-dimensional continuum of pitch-height (i.e. 'pitch' as ordinarily defined)", and graphs it ''as opposed to'' his concept of "harmonic distance", which was ironically the first measurement named by Gene Ward Smith as a "height": "Tenney height".</ref>.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Definition:&lt;/h1&gt;
 
A &lt;strong&gt;height&lt;/strong&gt; is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the (non-zero) rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.&lt;br /&gt;
== See also ==
&lt;br /&gt;
* [[Commas by taxicab distance]]
A height function H(q) on the rationals q should fulfill the following criteria:&lt;br /&gt;
* [[Harmonic entropy]]
&lt;ol&gt;&lt;li&gt;Given any constant C, there are finitely many elements q such that H(q) &amp;lt;= C.&lt;/li&gt;&lt;li&gt;There is a unique constant K such that H(q) &amp;gt;= K, for all q.&lt;/li&gt;&lt;li&gt;H(q) = H(1/q)&lt;/li&gt;&lt;/ol&gt;&lt;br /&gt;
 
Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.&lt;br /&gt;
== References ==
&lt;br /&gt;
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
H(q) \equiv F(H(q))&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;H(q) \equiv F(H(q))&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Examples:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Examples:&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
<references/>
    &lt;tr&gt;
        &lt;td&gt;Name:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;H(n/d)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;H(q)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;H(q) simplified by equivalence relation&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Abstract&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Benedetti%20Height"&gt;Benedetti height&lt;/a&gt;&lt;br /&gt;
(or &lt;a class="wiki_link" href="/Tenney%20Height"&gt;Tenney Height&lt;/a&gt;)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
nd&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;nd&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
2^{T1(q)}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{T1(q)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:3:
[[math]]&amp;lt;br/&amp;gt;
T1(q)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1(q)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Complexity&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Weil Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:4:
[[math]]&amp;lt;br/&amp;gt;
max(n,d)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;max(n,d)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:5:
[[math]]&amp;lt;br/&amp;gt;
2^{(T1(q)+|log_2(q)|)/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{(T1(q)+|log_2(q)|)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:5 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:6:
[[math]]&amp;lt;br/&amp;gt;
T1(q)+|log_2(q)|&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1(q)+|log_2(q)|&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Complexity+|Span|&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Arithmetic Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:7:
[[math]]&amp;lt;br/&amp;gt;
n+d&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n+d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:8:
[[math]]&amp;lt;br/&amp;gt;
\frac{(q+1)}{\sqrt{q}}}2^{T1(q)/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\frac{(q+1)}{\sqrt{q}}}2^{T1(q)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:8 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:9:
[[math]]&amp;lt;br/&amp;gt;
T1(q)+2log_2(q+1)-log_2(q)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1(q)+2log_2(q+1)-log_2(q)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:9 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Complexity+2(Tartini Tone Span)-Span&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Kees%20Height"&gt;Kees Height&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:10:
[[math]]&amp;lt;br/&amp;gt;
max(2^{-v_2(n)}n,&amp;lt;br /&amp;gt;
2^{-v_2(d)}d)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;max(2^{-v_2(n)}n,
2^{-v_2(d)}d)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:10 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:11:
[[math]]&amp;lt;br/&amp;gt;
2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:11 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:12:
[[math]]&amp;lt;br/&amp;gt;
T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;No-2's-Complexity+|No-2's-Span|&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


Where T1(q) is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)"&gt;tenney norm&lt;/a&gt; of q in monzo form, and vp(x) is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/P-adic_order" rel="nofollow"&gt;p-adic valuation&lt;/a&gt; of x.&lt;br /&gt;
[[Category:Math]]
&lt;br /&gt;
[[Category:Interval complexity measures]]
Some useful identities:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:13:
[[math]]&amp;lt;br/&amp;gt;
n=2^{(T1(q)+log_2(q))/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n=2^{(T1(q)+log_2(q))/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:13 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:14:
[[math]]&amp;lt;br/&amp;gt;
d=2^{(T1(q)-log_2(q))/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;d=2^{(T1(q)-log_2(q))/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:14 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:15:
[[math]]&amp;lt;br/&amp;gt;
nd=2^{T1(q)}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;nd=2^{T1(q)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:15 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Latest revision as of 13:04, 26 April 2025

The height is a mathematical tool to measure the complexity of JI intervals.

Definition

A height is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement (see Wikipedia: Height function). For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.

A height function H(q) on the positive rationals q should fulfill the following criteria:

  1. Given any constant C, there are finitely many elements q such that H(q) ≤ C.
  2. H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.
  3. H(q) = H(1) iff q = 1.
  4. H(q) = H(1/q)
  5. H(qn) ≥ H(q) for any non-negative integer n.

If we have a function F which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:

[math]\displaystyle{ \displaystyle H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right) }[/math]

Exponentiation and logarithm are such functions commonly used for converting a height between arithmetic and logarithmic scales.

A semi-height is a function which does not obey criterion #3 above, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be octave equivalence, where two ratios q1 and q2 are considered equivalent if they differ only by factors of 2. We can also consider other equivalences. For example, we can assume tritave equivalence by ignoring factors of 3.

Height versus norm

Height functions are applied to ratios, whereas norms are measurements on interval lattices embedded in normed vector spaces. Some height functions are essentially norms, and they are numerically equal. For example, the Tenney height is also the Tenney norm.

However, not all height functions are norms, and not all norms are height functions. The Benedetti height is not a norm, since it does not satisfy the condition of absolute homogeneity. The taxicab distance is not a height, since there can be infinitely many intervals below a given bound.

Examples of height functions

Name Type H(n/d) H(q) H(q) simplified by equivalence relation
Benedetti height
(or Tenney height)
Height [math]\displaystyle{ nd }[/math] [math]\displaystyle{ 2^{\large{\|q\|_{T1}}} }[/math] [math]\displaystyle{ \|q\|_{T1} }[/math]
Wilson height Height [math]\displaystyle{ \text{sopfr}(n d) }[/math] [math]\displaystyle{ 2^{\large{\text{sopfr}(q)}} }[/math] [math]\displaystyle{ \text{sopfr}(q) }[/math]
Weil height Height [math]\displaystyle{ \max \left( {n , d} \right) }[/math] [math]\displaystyle{ 2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}} }[/math] [math]\displaystyle{ \|q\|_{T1} + \mid \log_2(\mid q \mid)\mid }[/math]
Arithmetic height Height [math]\displaystyle{ n + d }[/math] [math]\displaystyle{ \dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} }[/math] [math]\displaystyle{ \|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right) }[/math]
Harmonic semi-height Semi-Height [math]\displaystyle{ \dfrac {n d} {n + d} }[/math] [math]\displaystyle{ \dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} }[/math] [math]\displaystyle{ \|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right) }[/math]
Kees semi-height Semi-Height [math]\displaystyle{ \max \left( {2^{-v_2 \left( {n} \right)} n, 2^{-v_2 \left( {d} \right)} d} \right) }[/math] [math]\displaystyle{ 2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}} }[/math] [math]\displaystyle{ \|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) | }[/math]

Where ||q||T1 is the tenney norm of q in monzo form, and vp(q) is the p-adic valuation of q.

The function sopfr (nd) is the "sum of prime factors with repetition" of n·d. Equivalently, this is the L1 norm on monzos, but where each prime is weighted by p rather than log (p). This is called "Wilson's Complexity" in John Chalmers's Divisions of the Tetrachord[1].

Some useful identities:

  • [math]\displaystyle{ n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}} }[/math]
  • [math]\displaystyle{ d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}} }[/math]
  • [math]\displaystyle{ n d = 2^{\|q\|_{T1}} }[/math]

Height functions can also be put on the points of projective varieties. Since abstract regular temperaments can be identified with rational points on Grassmann varieties, complexity measures of regular temperaments are also height functions.

See Dave Keenan & Douglas Blumeyer's guide to RTT/Alternative complexities for an extensive discussion of heights and semi-heights used in regular temperament theory.

History

The concept of height was introduced to xenharmonics by Gene Ward Smith in 2001[2]; it comes from the mathematical field of number theory (for more information, see Wikipedia: Height function). It is not to be confused with the musical notion of pitch height (as opposed to pitch chroma)[3].

See also

References

  1. Division of the Tetrachord, page 55. John Chalmers.
  2. Yahoo! Tuning Group | Super Particular Stepsize
  3. Though it has also been used to refer to the size of an interval in cents. On page 23 of John Cage and the Theor of Harmony, Tenney writes: "The one-dimensional continuum of pitch-height (i.e. 'pitch' as ordinarily defined)", and graphs it as opposed to his concept of "harmonic distance", which was ironically the first measurement named by Gene Ward Smith as a "height": "Tenney height".