|
|
(33 intermediate revisions by 11 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | The '''height''' is a mathematical tool to measure the [[complexity]] of [[JI]] [[interval]]s. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-08-31 20:57:07 UTC</tt>.<br>
| |
| : The original revision id was <tt>447860730</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:=
| |
| A **height** is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.
| |
|
| |
|
| A height function H(q) on the positive rationals q should fulfill the following criteria: | | == Definition == |
| # Given any constant C, there are finitely many elements q such that H(q) ≤ C.
| | A '''height''' is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement (see [[Wikipedia: Height function]]). For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes. |
| # H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.
| |
| # H(q) = H(1) iff q = 1.
| |
| # H(q) = H(1/q)
| |
| # H(q^n) ≥ H(q) for any non-negative integer n
| |
|
| |
|
| If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
| | A height function H(''q'') on the positive rationals ''q'' should fulfill the following criteria: |
| [[math]]
| |
| H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)
| |
| [[math]]
| |
|
| |
|
| A **semi-height** is a function which does not obey criteria #3 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:
| | # Given any constant ''C'', there are finitely many elements ''q'' such that H(''q'') ≤ ''C''. |
| [[math]]
| | # H(''q'') is bounded below by H(1), so that H(''q'') ≥ H(1) for all q. |
| 2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q
| | # H(''q'') = H(1) iff ''q'' = 1. |
| [[math]]
| | # H(''q'') = H(1/''q'') |
| | # H(''q''<sup>''n''</sup>) ≥ H(''q'') for any non-negative integer ''n''. |
|
| |
|
| Or equivalently, if n has any integer solutions:
| | If we have a function F which is strictly increasing on the positive reals, then F(H(''q'')) will rank elements in the same order as H(''q''). We can therefore establish the following equivalence relation: |
| [[math]]
| |
| p = 2^n q
| |
| [[math]]
| |
|
| |
|
| If the above condition is met, we may then establish the following equivalence relation:
| | <math>\displaystyle H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</math> |
| [[math]]
| |
| p \equiv q
| |
| [[math]]
| |
|
| |
|
| By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.
| | Exponentiation and logarithm are such functions commonly used for converting a height between arithmetic and logarithmic scales. |
| ====== ====== | | |
| =Examples of Height Functions:=
| | A '''semi-height''' is a function which does not obey criterion #3 above, so that there is a rational number ''q'' ≠ 1 such that H(''q'') = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be [[octave equivalence]], where two ratios ''q''<sub>1</sub> and ''q''<sub>2</sub> are considered equivalent if they differ only by factors of 2. |
| || __Name:__ || __Type:__ || __H(n/d):__ || __H(q):__ || __H(q) simplified by equivalence relation:__ ||
| | We can also consider other equivalences. For example, we can assume tritave equivalence by ignoring factors of 3. |
| || [[Benedetti Height|Benedetti height]]
| | |
| (or [[Tenney Height]]) || Height || [[math]] | | == Height versus norm == |
| n d
| | Height functions are applied to ratios, whereas norms are measurements on interval lattices [[wikipedia: embedding|embedded]] in [[wikipedia: Normed vector space|normed vector spaces]]. Some height functions are essentially norms, and they are numerically equal. For example, the [[Tenney height]] is also the Tenney norm. |
| [[math]] || [[math]]
| | |
| 2^{\large{\|q\|_{T1}}} | | However, not all height functions are norms, and not all norms are height functions. The [[Benedetti height]] is not a norm, since it does not satisfy the condition of absolute homogeneity. The [[taxicab distance]] is not a height, since there can be infinitely many intervals below a given bound. |
| [[math]] || [[math]]
| | |
| \|q\|_{T1} | | == Examples of height functions == |
| [[math]] || | | {| class="wikitable" |
| || Weil Height || Height || [[math]] | | ! Name |
| \max \left( {n , d} \right) | | ! Type |
| [[math]] || [[math]]
| | ! H(''n''/''d'') |
| 2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}} | | ! H(''q'') |
| [[math]] || [[math]]
| | ! H(''q'') simplified by equivalence relation |
| \|q\|_{T1} + \mid \log_2(\mid q \mid)\mid | | |- |
| [[math]] ||
| | | [[Benedetti height]] <br> (or [[Tenney height]]) |
| || Arithmetic Height || Height || [[math]]
| | | Height |
| n + d | | | <math>nd</math> |
| [[math]] || [[math]]
| | | <math>2^{\large{\|q\|_{T1}}}</math> |
| \dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} | | | <math>\|q\|_{T1}</math> |
| [[math]] || [[math]]
| | |- |
| \|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right) | | | [[Wilson height]] |
| [[math]] ||
| | | Height |
| || Harmonic Height || Semi-Height || [[math]]
| | | <math>\text{sopfr}(n d)</math> |
| \dfrac {n d} {n + d} | | | <math>2^{\large{\text{sopfr}(q)}}</math> |
| [[math]] || [[math]]
| | | <math>\text{sopfr}(q)</math> |
| \dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} | | |- |
| [[math]] || [[math]]
| | | [[Weil height]] |
| \|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right) | | | Height |
| [[math]] ||
| | | <math>\max \left( {n , d} \right)</math> |
| || [[Kees Height]] || Semi-Height || [[math]]
| | | <math>2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</math> |
| \max \left( {2^{-v_2 \left( {n} \right)} n , | | | <math>\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</math> |
| 2^{-v_2 \left( {d} \right)} d} \right) | | |- |
| [[math]] || [[math]]
| | | Arithmetic height |
| 2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)\right)}} | | | Height |
| [[math]] || [[math]]
| | | <math>n + d</math> |
| \|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) | | | | <math>\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math> |
| [[math]] ||
| | | <math>\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</math> |
| Where ||q||<span style="font-size: 80%; vertical-align: sub;">T1</span> is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and v<span style="vertical-align: sub;">p</span>(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x. | | |- |
| | | Harmonic semi-height |
| | | Semi-Height |
| | | <math>\dfrac {n d} {n + d}</math> |
| | | <math>\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math> |
| | | <math>\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</math> |
| | |- |
| | | [[Kees semi-height]] |
| | | Semi-Height |
| | | <math>\max \left( {2^{-v_2 \left( {n} \right)} n, 2^{-v_2 \left( {d} \right)} d} \right)</math> |
| | | <math>2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}</math> |
| | | <math>\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</math> |
| | |} |
| | |
| | Where ||''q''||<sub>T1</sub> is the [[Generalized Tenney norms and Tp interval space #The Tenney Norm (T1 norm)|tenney norm]] of ''q'' in monzo form, and v<sub>''p''</sub>(''q'') is the [[Wikipedia: P-adic order|''p''-adic valuation]] of ''q''. |
| | |
| | The function sopfr (''nd'') is the [https://mathworld.wolfram.com/SumofPrimeFactors.html "sum of prime factors with repetition"] of ''n''·''d''. Equivalently, this is the L<sub>1</sub> norm on monzos, but where each prime is weighted by ''p'' rather than log (''p''). This is called "Wilson's Complexity" in [[John Chalmers]]'s ''Divisions of the Tetrachord''<ref>[http://lumma.org/tuning/chalmers/DivisionsOfTheTetrachord.pdf ''Division of the Tetrachord''], page 55. John Chalmers. </ref>. |
|
| |
|
| Some useful identities: | | Some useful identities: |
| [[math]]
| | * <math>n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}</math> |
| n = 2^{\large{\frac{1}{2}\|q\|_{T1} + \log_2(q)}} | | * <math>d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}</math> |
| [[math]]
| | * <math>n d = 2^{\|q\|_{T1}}</math> |
| [[math]]
| | |
| d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}} | | Height functions can also be put on the points of [http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html projective varieties]. Since [[abstract regular temperament]]s can be identified with rational points on [[Wikipedia: Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions. |
| [[math]]
| | |
| [[math]]
| | See [[Dave Keenan & Douglas Blumeyer's guide to RTT/Alternative complexities]] for an extensive discussion of heights and semi-heights used in regular temperament theory. |
| n d = 2^{\|q\|_{T1}} | | |
| [[math]] | | == History == |
| | The concept of height was introduced to xenharmonics by [[Gene Ward Smith]] in 2001<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_31418#31488 Yahoo! Tuning Group | ''Super Particular Stepsize'']</ref>; it comes from the mathematical field of number theory (for more information, see [[Wikipedia: Height function]]). It is not to be confused with the musical notion of [[Wikipedia: Pitch (music) #Theories of pitch perception|''pitch height'' (as opposed to ''pitch chroma'')]]<ref>Though it has also been used to refer to the size of an interval in cents. On page 23 of [https://www.plainsound.org/pdfs/JC&ToH.pdf ''John Cage and the Theor of Harmony''], Tenney writes: "The one-dimensional continuum of pitch-height (i.e. 'pitch' as ordinarily defined)", and graphs it ''as opposed to'' his concept of "harmonic distance", which was ironically the first measurement named by Gene Ward Smith as a "height": "Tenney height".</ref>. |
| | |
| | == See also == |
| | * [[Commas by taxicab distance]] |
| | * [[Harmonic entropy]] |
|
| |
|
| Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[Abstract regular temperament|abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.</pre></div>
| | == References == |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Height</title></head><body><!-- ws:start:WikiTextHeadingRule:22:&lt;h1&gt; --><h1 id="toc0"><a name="Definition:"></a><!-- ws:end:WikiTextHeadingRule:22 -->Definition:</h1>
| |
| A <strong>height</strong> is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.<br />
| |
| <br />
| |
| A height function H(q) on the positive rationals q should fulfill the following criteria:<br />
| |
| <ol><li>Given any constant C, there are finitely many elements q such that H(q) ≤ C.</li><li>H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.</li><li>H(q) = H(1) iff q = 1.</li><li>H(q) = H(1/q)</li><li>H(q^n) ≥ H(q) for any non-negative integer n</li></ol><br />
| |
| If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:<br />
| |
| <!-- ws:start:WikiTextMathRule:0:
| |
| [[math]]&lt;br/&gt;
| |
| H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</script><!-- ws:end:WikiTextMathRule:0 --><br />
| |
| <br />
| |
| A <strong>semi-height</strong> is a function which does not obey criteria #3 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:<br />
| |
| <!-- ws:start:WikiTextMathRule:1:
| |
| [[math]]&lt;br/&gt;
| |
| 2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q</script><!-- ws:end:WikiTextMathRule:1 --><br />
| |
| <br />
| |
| Or equivalently, if n has any integer solutions:<br />
| |
| <!-- ws:start:WikiTextMathRule:2:
| |
| [[math]]&lt;br/&gt;
| |
| p = 2^n q&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">p = 2^n q</script><!-- ws:end:WikiTextMathRule:2 --><br />
| |
| <br />
| |
| If the above condition is met, we may then establish the following equivalence relation:<br />
| |
| <!-- ws:start:WikiTextMathRule:3:
| |
| [[math]]&lt;br/&gt;
| |
| p \equiv q&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">p \equiv q</script><!-- ws:end:WikiTextMathRule:3 --><br />
| |
| <br />
| |
| By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.<br />
| |
| <!-- ws:start:WikiTextHeadingRule:24:&lt;h6&gt; --><h6 id="toc1"><!-- ws:end:WikiTextHeadingRule:24 --> </h6>
| |
| <!-- ws:start:WikiTextHeadingRule:26:&lt;h1&gt; --><h1 id="toc2"><a name="Examples of Height Functions:"></a><!-- ws:end:WikiTextHeadingRule:26 -->Examples of Height Functions:</h1>
| |
|
| |
|
| |
|
| <table class="wiki_table">
| | <references/> |
| <tr>
| |
| <td><u>Name:</u><br />
| |
| </td>
| |
| <td><u>Type:</u><br />
| |
| </td>
| |
| <td><u>H(n/d):</u><br />
| |
| </td>
| |
| <td><u>H(q):</u><br />
| |
| </td>
| |
| <td><u>H(q) simplified by equivalence relation:</u><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><a class="wiki_link" href="/Benedetti%20Height">Benedetti height</a><br />
| |
| (or <a class="wiki_link" href="/Tenney%20Height">Tenney Height</a>)<br />
| |
| </td>
| |
| <td>Height<br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:4:
| |
| [[math]]&lt;br/&gt;
| |
| n d&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">n d</script><!-- ws:end:WikiTextMathRule:4 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:5:
| |
| [[math]]&lt;br/&gt;
| |
| 2^{\large{\|q\|_{T1}}}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">2^{\large{\|q\|_{T1}}}</script><!-- ws:end:WikiTextMathRule:5 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:6:
| |
| [[math]]&lt;br/&gt;
| |
| \|q\|_{T1}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\|q\|_{T1}</script><!-- ws:end:WikiTextMathRule:6 --><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>Weil Height<br />
| |
| </td>
| |
| <td>Height<br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:7:
| |
| [[math]]&lt;br/&gt;
| |
| \max \left( {n , d} \right)&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\max \left( {n , d} \right)</script><!-- ws:end:WikiTextMathRule:7 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:8:
| |
| [[math]]&lt;br/&gt;
| |
| 2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</script><!-- ws:end:WikiTextMathRule:8 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:9:
| |
| [[math]]&lt;br/&gt;
| |
| \|q\|_{T1} + \mid \log_2(\mid q \mid)\mid&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</script><!-- ws:end:WikiTextMathRule:9 --><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>Arithmetic Height<br />
| |
| </td>
| |
| <td>Height<br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:10:
| |
| [[math]]&lt;br/&gt;
| |
| n + d&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">n + d</script><!-- ws:end:WikiTextMathRule:10 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:11:
| |
| [[math]]&lt;br/&gt;
| |
| \dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</script><!-- ws:end:WikiTextMathRule:11 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:12:
| |
| [[math]]&lt;br/&gt;
| |
| \|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</script><!-- ws:end:WikiTextMathRule:12 --><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>Harmonic Height<br />
| |
| </td>
| |
| <td>Semi-Height<br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:13:
| |
| [[math]]&lt;br/&gt;
| |
| \dfrac {n d} {n + d}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\dfrac {n d} {n + d}</script><!-- ws:end:WikiTextMathRule:13 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:14:
| |
| [[math]]&lt;br/&gt;
| |
| \dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</script><!-- ws:end:WikiTextMathRule:14 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:15:
| |
| [[math]]&lt;br/&gt;
| |
| \|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</script><!-- ws:end:WikiTextMathRule:15 --><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><a class="wiki_link" href="/Kees%20Height">Kees Height</a><br />
| |
| </td>
| |
| <td>Semi-Height<br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:16:
| |
| [[math]]&lt;br/&gt;
| |
| \max \left( {2^{-v_2 \left( {n} \right)} n ,&lt;br /&gt;
| |
| 2^{-v_2 \left( {d} \right)} d} \right)&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\max \left( {2^{-v_2 \left( {n} \right)} n ,
| |
| 2^{-v_2 \left( {d} \right)} d} \right)</script><!-- ws:end:WikiTextMathRule:16 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:17:
| |
| [[math]]&lt;br/&gt;
| |
| 2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)\right)}}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(2) - v_2(q) \mid \right)\right)}}</script><!-- ws:end:WikiTextMathRule:17 --><br />
| |
| </td>
| |
| <td><!-- ws:start:WikiTextMathRule:18:
| |
| [[math]]&lt;br/&gt;
| |
| \|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</script><!-- ws:end:WikiTextMathRule:18 --><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| Where ||q||<span style="font-size: 80%; vertical-align: sub;">T1</span> is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)">tenney norm</a> of q in monzo form, and v<span style="vertical-align: sub;">p</span>(x) is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/P-adic_order" rel="nofollow">p-adic valuation</a> of x.<br />
| | [[Category:Math]] |
| <br />
| | [[Category:Interval complexity measures]] |
| Some useful identities:<br />
| |
| <!-- ws:start:WikiTextMathRule:19:
| |
| [[math]]&lt;br/&gt;
| |
| n = 2^{\large{\frac{1}{2}\|q\|_{T1} + \log_2(q)}}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">n = 2^{\large{\frac{1}{2}\|q\|_{T1} + \log_2(q)}}</script><!-- ws:end:WikiTextMathRule:19 --><br />
| |
| <!-- ws:start:WikiTextMathRule:20:
| |
| [[math]]&lt;br/&gt;
| |
| d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}</script><!-- ws:end:WikiTextMathRule:20 --><br />
| |
| <!-- ws:start:WikiTextMathRule:21:
| |
| [[math]]&lt;br/&gt;
| |
| n d = 2^{\|q\|_{T1}}&lt;br/&gt;[[math]]
| |
| --><script type="math/tex">n d = 2^{\|q\|_{T1}}</script><!-- ws:end:WikiTextMathRule:21 --><br />
| |
| <br />
| |
| Height functions can also be put on the points of <a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow">projective varieties</a>. Since <a class="wiki_link" href="/Abstract%20regular%20temperament">abstract regular temperaments</a> can be identified with rational points on <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow">Grassmann varieties</a>, complexity measures of regular temperaments are also height functions.</body></html></pre></div>
| |
The height is a mathematical tool to measure the complexity of JI intervals.
Definition
A height is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement (see Wikipedia: Height function). For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.
A height function H(q) on the positive rationals q should fulfill the following criteria:
- Given any constant C, there are finitely many elements q such that H(q) ≤ C.
- H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.
- H(q) = H(1) iff q = 1.
- H(q) = H(1/q)
- H(qn) ≥ H(q) for any non-negative integer n.
If we have a function F which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
[math]\displaystyle{ \displaystyle H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right) }[/math]
Exponentiation and logarithm are such functions commonly used for converting a height between arithmetic and logarithmic scales.
A semi-height is a function which does not obey criterion #3 above, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be octave equivalence, where two ratios q1 and q2 are considered equivalent if they differ only by factors of 2.
We can also consider other equivalences. For example, we can assume tritave equivalence by ignoring factors of 3.
Height versus norm
Height functions are applied to ratios, whereas norms are measurements on interval lattices embedded in normed vector spaces. Some height functions are essentially norms, and they are numerically equal. For example, the Tenney height is also the Tenney norm.
However, not all height functions are norms, and not all norms are height functions. The Benedetti height is not a norm, since it does not satisfy the condition of absolute homogeneity. The taxicab distance is not a height, since there can be infinitely many intervals below a given bound.
Examples of height functions
Name
|
Type
|
H(n/d)
|
H(q)
|
H(q) simplified by equivalence relation
|
Benedetti height (or Tenney height)
|
Height
|
[math]\displaystyle{ nd }[/math]
|
[math]\displaystyle{ 2^{\large{\|q\|_{T1}}} }[/math]
|
[math]\displaystyle{ \|q\|_{T1} }[/math]
|
Wilson height
|
Height
|
[math]\displaystyle{ \text{sopfr}(n d) }[/math]
|
[math]\displaystyle{ 2^{\large{\text{sopfr}(q)}} }[/math]
|
[math]\displaystyle{ \text{sopfr}(q) }[/math]
|
Weil height
|
Height
|
[math]\displaystyle{ \max \left( {n , d} \right) }[/math]
|
[math]\displaystyle{ 2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}} }[/math]
|
[math]\displaystyle{ \|q\|_{T1} + \mid \log_2(\mid q \mid)\mid }[/math]
|
Arithmetic height
|
Height
|
[math]\displaystyle{ n + d }[/math]
|
[math]\displaystyle{ \dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} }[/math]
|
[math]\displaystyle{ \|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right) }[/math]
|
Harmonic semi-height
|
Semi-Height
|
[math]\displaystyle{ \dfrac {n d} {n + d} }[/math]
|
[math]\displaystyle{ \dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} }[/math]
|
[math]\displaystyle{ \|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right) }[/math]
|
Kees semi-height
|
Semi-Height
|
[math]\displaystyle{ \max \left( {2^{-v_2 \left( {n} \right)} n, 2^{-v_2 \left( {d} \right)} d} \right) }[/math]
|
[math]\displaystyle{ 2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}} }[/math]
|
[math]\displaystyle{ \|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) | }[/math]
|
Where ||q||T1 is the tenney norm of q in monzo form, and vp(q) is the p-adic valuation of q.
The function sopfr (nd) is the "sum of prime factors with repetition" of n·d. Equivalently, this is the L1 norm on monzos, but where each prime is weighted by p rather than log (p). This is called "Wilson's Complexity" in John Chalmers's Divisions of the Tetrachord[1].
Some useful identities:
- [math]\displaystyle{ n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}} }[/math]
- [math]\displaystyle{ d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}} }[/math]
- [math]\displaystyle{ n d = 2^{\|q\|_{T1}} }[/math]
Height functions can also be put on the points of projective varieties. Since abstract regular temperaments can be identified with rational points on Grassmann varieties, complexity measures of regular temperaments are also height functions.
See Dave Keenan & Douglas Blumeyer's guide to RTT/Alternative complexities for an extensive discussion of heights and semi-heights used in regular temperament theory.
History
The concept of height was introduced to xenharmonics by Gene Ward Smith in 2001[2]; it comes from the mathematical field of number theory (for more information, see Wikipedia: Height function). It is not to be confused with the musical notion of pitch height (as opposed to pitch chroma)[3].
See also
References