Strictly proper 7-tone 31edo scales: Difference between revisions
Jump to navigation
Jump to search
Wikispaces>genewardsmith **Imported revision 160462935 - Original comment: ** |
use 'step pattern' as column name |
||
(22 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
This is a list of [[:Category:7-tone scales|7-tone]] scales in [[31edo]] which are strictly proper with regard to the [[Rothenberg propriety]]. | |||
This is | |||
: | |||
The "type" of a scale is defined by the linear temperament supported by 31edo in which it has the least span. "Breed type" means it is a tie between miracle and hemiwuerschmidt. | |||
== Meantone type == | |||
{| class="wikitable" | |||
|- | |||
! step pattern | |||
! name | |||
! example(s) | |||
|- | |||
| '''<tt>5 5 3 5 5 5 3</tt>''' | |||
| Meantone[7]; diatonic scale | |||
| | |||
|- | |||
| '''<tt>5 3 5 5 5 5 3</tt>''' | |||
| Melodic minor scale | |||
| | |||
|- | |||
| '''<tt>5 3 5 5 3 7 3</tt>''' | |||
| Harmonic minor scale; inverse harmonic major | |||
| | |||
|- | |||
| '''<tt>5 5 3 5 3 7 3</tt>''' | |||
| Harmonic major scale; inverse harmonic minor | |||
| | |||
|- | |||
| '''<tt>5 5 3 3 5 5 5</tt>''' | |||
| Major locrian scale | |||
| | |||
|- | |||
| '''<tt>3 7 1 7 3 5 5</tt>''' | |||
| Diminished diatonic scale | |||
| [http://chrisvaisvil.com/?p=142 Strange Diatonic] by [[Chris Vaisvil]] [http://micro.soonlabel.com/strange-diatonic/strange-diatonic-1.mp3 play]<br>[http://micro.soonlabel.com/gene_ward_smith/Others/Curley/Zach%20Curley%20-%20Omega%20Centauri.mp3 Omega centauri]{{dead link}} by [[Zach Curley]] | |||
|- | |||
| '''<tt>5 5 3 5 6 4 3</tt>''' | |||
| Enharmonic major; inverse enharmonic minor | |||
| | |||
|- | |||
| '''<tt>5 3 4 6 5 3 5</tt>''' | |||
| Enharmonic minor; inverse enharmonic major | |||
| | |||
|- | |||
| '''<tt>5 5 3 5 6 2 5</tt>''' | |||
| Enharmonic mixolydian | |||
| | |||
|- | |||
| '''<tt>5 5 2 6 5 3 5</tt>''' | |||
| Inverse enharmonic mixolydian | |||
| | |||
|- | |||
| '''<tt>5 5 2 6 3 5 5</tt>''' | |||
| Enharmonic major-minor | |||
| | |||
|- | |||
| '''<tt>5 5 5 3 6 2 5</tt>''' | |||
| Inverse enharmonic major-minor | |||
| | |||
|- | |||
| '''<tt>6 4 3 5 6 2 5</tt>''' | |||
| Major doubleflat; inverse minor doubleflat | |||
| | |||
|- | |||
| '''<tt>5 3 4 6 5 2 6</tt>''' | |||
| Minor doubleflat; inverse major doubleflat | |||
| | |||
|- | |||
| '''<tt>5 5 5 3 6 5 2</tt>''' | |||
| Ping | |||
| | |||
|- | |||
| '''<tt>3 5 5 5 2 5 6</tt>''' | |||
| Inverse ping | |||
| | |||
|- | |||
| '''<tt>3 7 2 6 3 5 5</tt>''' | |||
| Alhijaz; inverse ambika | |||
| | |||
|- | |||
| '''<tt>6 2 7 3 5 5 3</tt>''' | |||
| Ambika; inverse alhijaz | |||
| | |||
|- | |||
| '''<tt>6 4 5 3 6 5 2</tt>''' | |||
| Kung; inverse ousak | |||
| | |||
|- | |||
| '''<tt>3 5 4 6 2 5 6</tt>''' | |||
| Ousak; inverse kung | |||
| | |||
|} | |||
== Valentine == | |||
{| class="wikitable" | |||
|- | |||
! schema | |||
! name | |||
|- | |||
| '''<tt>6 4 4 6 2 7 2</tt>''' | |||
| Silver | |||
|- | |||
| '''<tt>6 4 4 4 4 7 2</tt>''' | |||
| Harmonia | |||
|- | |||
| '''<tt>4 4 4 6 2 7 4</tt>''' | |||
| Inverse harmonia | |||
|- | |||
| '''<tt>6 4 4 4 5 6 2</tt>''' | |||
| Pendragon | |||
|- | |||
| '''<tt>4 6 2 6 5 4 4</tt>''' | |||
| Inverse pendragon | |||
|- | |||
| '''<tt>6 2 6 4 4 6 3</tt>''' | |||
| Hipop | |||
|- | |||
| '''<tt>4 6 2 6 3 6 4</tt>''' | |||
| Inverse Hipop | |||
|- | |||
| '''<tt>4 6 2 6 4 4 5</tt>''' | |||
| Malakon | |||
|- | |||
| '''<tt>4 6 2 6 4 5 4</tt>''' | |||
| Inverse malakon | |||
|- | |||
| '''<tt>4 4 6 4 5 2 6</tt>''' | |||
| Bagpipe | |||
|- | |||
| '''<tt>4 6 4 4 6 2 5</tt>''' | |||
| Inverse bagpipe | |||
|- | |||
| '''<tt>6 4 4 4 6 2 5</tt>''' | |||
| Pitu | |||
|- | |||
| '''<tt>6 4 4 4 6 5 2</tt>''' | |||
| Inverse pitu | |||
|- | |||
| '''<tt>6 4 4 4 4 4 5</tt>''' | |||
| Porch | |||
|- | |||
| '''<tt>4 4 4 6 5 4 4</tt>''' | |||
| Inverse porch | |||
|} | |||
== Miracle type == | |||
{| class="wikitable" | |||
|- | |||
! schema | |||
! name | |||
|- | |||
| '''<tt>5 4 3 6 3 4 6</tt>''' | |||
| Subdom scale; inverse superton | |||
|- | |||
| '''<tt>5 6 4 3 6 3 4</tt>''' | |||
| Superton scale; inverse subdom | |||
|- | |||
| '''<tt>5 4 3 6 3 6 4</tt>''' | |||
| Nudia; neutral diatonic | |||
|- | |||
| '''<tt>5 4 6 3 6 3 4</tt>''' | |||
| Inverse nudia | |||
|- | |||
| '''<tt>3 6 3 6 3 4 6</tt>''' | |||
| Nurow; Neutral triads in row | |||
|- | |||
| '''<tt>6 3 6 3 6 4 3</tt>''' | |||
| Inverse nurow | |||
|} | |||
== Mohajira type == | |||
{| class="wikitable" | |||
|- | |||
! schema | |||
! name | |||
|- | |||
| '''<tt>4 5 5 4 4 5 4</tt>''' | |||
| Sikah; Rast; Neutral Diatonic Hypolydian | |||
|- | |||
| '''<tt>4 4 4 4 5 5 5</tt>''' | |||
| Sheimanic | |||
|- | |||
| '''<tt>4 5 5 4 4 4 5</tt>''' | |||
| Thaiic | |||
|- | |||
| '''<tt>4 5 4 4 4 5 5</tt>''' | |||
| Inverse thaiic | |||
|- | |||
| '''<tt>4 5 4 5 4 5 4</tt>''' | |||
| Mohajira; Neutral Dorian | |||
|} | |||
== Hemiwuerschmidt type == | |||
{| class="wikitable" | |||
|- | |||
! schema | |||
! name | |||
|- | |||
| '''<tt>5 5 5 5 5 1 5</tt>''' | |||
| Hemiwuerschmidt/Hemithirds[7] | |||
|- | |||
| '''<tt>5 5 4 4 6 5 2</tt>''' | |||
| Hemaj; inverse hemin | |||
|- | |||
| '''<tt>4 4 5 5 2 5 6</tt>''' | |||
| Hemin; inverse hemaj | |||
|- | |||
| '''<tt>4 5 2 5 5 4 6</tt>''' | |||
| Gypsi; 11/9-10/7-7/4 chord on tonic | |||
|- | |||
| '''<tt>4 5 5 2 5 4 6</tt>''' | |||
| Inverse gypsi; 11/9-10/7-7/4 chord on tonic | |||
|- | |||
| '''<tt>5 5 5 5 5 4 2</tt>''' | |||
| Leadhole | |||
|- | |||
| '''<tt>5 5 5 5 5 2 4</tt>''' | |||
| Inverse leadhole | |||
|} | |||
== Mothra type == | |||
{| class="wikitable" | |||
|- | |||
! schema | |||
! name | |||
|- | |||
| '''<tt>5 5 5 3 6 4 3</tt>''' | |||
| Lydic | |||
|- | |||
| '''<tt>5 5 5 3 4 6 3</tt>''' | |||
| Inverse lydic | |||
|- | |||
| '''<tt>5 5 3 5 4 6 3</tt>''' | |||
| Ionic | |||
|- | |||
| '''<tt>5 3 6 4 5 3 5</tt>''' | |||
| Aeolic; inverse ionic | |||
|- | |||
| '''<tt>4 6 4 4 4 6 3</tt>''' | |||
| Quahog | |||
|- | |||
| '''<tt>6 4 4 4 6 4 3</tt>''' | |||
| Inverse quahog | |||
|- | |||
| '''<tt>6 4 5 3 6 4 3</tt>''' | |||
| Higasi | |||
|- | |||
| '''<tt>4 6 3 5 4 6 3</tt>''' | |||
| Inverse higasi | |||
|} | |||
== Orwell type == | |||
{| class="wikitable" | |||
|- | |||
! schema | |||
! name | |||
|- | |||
| '''<tt>5 3 6 4 4 6 3</tt>''' | |||
| Orminor | |||
|- | |||
| '''<tt>4 6 4 4 6 4 3</tt>''' | |||
| Ormed | |||
|- | |||
| '''<tt>4 6 4 4 3 6 4</tt>''' | |||
| Augton | |||
|- | |||
| '''<tt>4 6 4 4 6 3 4</tt>''' | |||
| Inverse augton | |||
|} | |||
== Breed type == | |||
{| class="wikitable" | |||
|- | |||
! schema | |||
! name | |||
|- | |||
| '''<tt>3 4 5 6 2 6 5</tt>''' | |||
| Hemisub | |||
|- | |||
| '''<tt>4 3 5 6 2 6 5</tt>''' | |||
| Inverse hemisub | |||
|- | |||
| '''<tt>6 3 5 4 5 3 5</tt>''' | |||
| Heminewt | |||
|- | |||
| '''<tt>4 5 3 6 5 3 5</tt>''' | |||
| Inverse heminewt | |||
|} | |||
== See also == | |||
* [[31edo modes]] | |||
* [[Strictly proper 19edo scales]] | |||
[[Category:Lists of scales]] | |||
[[Category:7-tone scales| ]] | |||
[[Category:31edo]] | |||
[[Category:Listen]] |
Latest revision as of 20:19, 23 March 2025
This is a list of 7-tone scales in 31edo which are strictly proper with regard to the Rothenberg propriety.
The "type" of a scale is defined by the linear temperament supported by 31edo in which it has the least span. "Breed type" means it is a tie between miracle and hemiwuerschmidt.
Meantone type
step pattern | name | example(s) |
---|---|---|
5 5 3 5 5 5 3 | Meantone[7]; diatonic scale | |
5 3 5 5 5 5 3 | Melodic minor scale | |
5 3 5 5 3 7 3 | Harmonic minor scale; inverse harmonic major | |
5 5 3 5 3 7 3 | Harmonic major scale; inverse harmonic minor | |
5 5 3 3 5 5 5 | Major locrian scale | |
3 7 1 7 3 5 5 | Diminished diatonic scale | Strange Diatonic by Chris Vaisvil play Omega centauri[dead link] by Zach Curley |
5 5 3 5 6 4 3 | Enharmonic major; inverse enharmonic minor | |
5 3 4 6 5 3 5 | Enharmonic minor; inverse enharmonic major | |
5 5 3 5 6 2 5 | Enharmonic mixolydian | |
5 5 2 6 5 3 5 | Inverse enharmonic mixolydian | |
5 5 2 6 3 5 5 | Enharmonic major-minor | |
5 5 5 3 6 2 5 | Inverse enharmonic major-minor | |
6 4 3 5 6 2 5 | Major doubleflat; inverse minor doubleflat | |
5 3 4 6 5 2 6 | Minor doubleflat; inverse major doubleflat | |
5 5 5 3 6 5 2 | Ping | |
3 5 5 5 2 5 6 | Inverse ping | |
3 7 2 6 3 5 5 | Alhijaz; inverse ambika | |
6 2 7 3 5 5 3 | Ambika; inverse alhijaz | |
6 4 5 3 6 5 2 | Kung; inverse ousak | |
3 5 4 6 2 5 6 | Ousak; inverse kung |
Valentine
schema | name |
---|---|
6 4 4 6 2 7 2 | Silver |
6 4 4 4 4 7 2 | Harmonia |
4 4 4 6 2 7 4 | Inverse harmonia |
6 4 4 4 5 6 2 | Pendragon |
4 6 2 6 5 4 4 | Inverse pendragon |
6 2 6 4 4 6 3 | Hipop |
4 6 2 6 3 6 4 | Inverse Hipop |
4 6 2 6 4 4 5 | Malakon |
4 6 2 6 4 5 4 | Inverse malakon |
4 4 6 4 5 2 6 | Bagpipe |
4 6 4 4 6 2 5 | Inverse bagpipe |
6 4 4 4 6 2 5 | Pitu |
6 4 4 4 6 5 2 | Inverse pitu |
6 4 4 4 4 4 5 | Porch |
4 4 4 6 5 4 4 | Inverse porch |
Miracle type
schema | name |
---|---|
5 4 3 6 3 4 6 | Subdom scale; inverse superton |
5 6 4 3 6 3 4 | Superton scale; inverse subdom |
5 4 3 6 3 6 4 | Nudia; neutral diatonic |
5 4 6 3 6 3 4 | Inverse nudia |
3 6 3 6 3 4 6 | Nurow; Neutral triads in row |
6 3 6 3 6 4 3 | Inverse nurow |
Mohajira type
schema | name |
---|---|
4 5 5 4 4 5 4 | Sikah; Rast; Neutral Diatonic Hypolydian |
4 4 4 4 5 5 5 | Sheimanic |
4 5 5 4 4 4 5 | Thaiic |
4 5 4 4 4 5 5 | Inverse thaiic |
4 5 4 5 4 5 4 | Mohajira; Neutral Dorian |
Hemiwuerschmidt type
schema | name |
---|---|
5 5 5 5 5 1 5 | Hemiwuerschmidt/Hemithirds[7] |
5 5 4 4 6 5 2 | Hemaj; inverse hemin |
4 4 5 5 2 5 6 | Hemin; inverse hemaj |
4 5 2 5 5 4 6 | Gypsi; 11/9-10/7-7/4 chord on tonic |
4 5 5 2 5 4 6 | Inverse gypsi; 11/9-10/7-7/4 chord on tonic |
5 5 5 5 5 4 2 | Leadhole |
5 5 5 5 5 2 4 | Inverse leadhole |
Mothra type
schema | name |
---|---|
5 5 5 3 6 4 3 | Lydic |
5 5 5 3 4 6 3 | Inverse lydic |
5 5 3 5 4 6 3 | Ionic |
5 3 6 4 5 3 5 | Aeolic; inverse ionic |
4 6 4 4 4 6 3 | Quahog |
6 4 4 4 6 4 3 | Inverse quahog |
6 4 5 3 6 4 3 | Higasi |
4 6 3 5 4 6 3 | Inverse higasi |
Orwell type
schema | name |
---|---|
5 3 6 4 4 6 3 | Orminor |
4 6 4 4 6 4 3 | Ormed |
4 6 4 4 3 6 4 | Augton |
4 6 4 4 6 3 4 | Inverse augton |
Breed type
schema | name |
---|---|
3 4 5 6 2 6 5 | Hemisub |
4 3 5 6 2 6 5 | Inverse hemisub |
6 3 5 4 5 3 5 | Heminewt |
4 5 3 6 5 3 5 | Inverse heminewt |