441edo: Difference between revisions

Eliora (talk | contribs)
added scales
m Cleanup and update
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''441 equal divisions of the octave''' ('''441edo'''), or the '''441(-tone) equal temperament''' ('''441tet''', '''441et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 441 parts of about 2.72 [[cent]]s each, a size close to [[625/624]], the tunbarsma.
{{ED intro}}


== Theory ==
== Theory ==
441edo is a very strong [[7-limit]] system; strong enough to qualify as a [[zeta peak edo]]. It is also very strong simply considered as a [[5-limit]] system; it is the first division past [[118edo|118]] with a lower [[5-limit]] [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]. In the 5-limit it [[tempering out|tempers out]] the [[hemithirds comma]], {{monzo| 38 -2 -15 }}, the [[ennealimma]], {{monzo| 1 -27 18 }}, whoosh, {{monzo| 37 25 -33 }}, and egads, {{monzo| -36 -52 51 }}. In the 7-limit it tempers out [[2401/2400]], [[4375/4374]], [[420175/419904]] and [[250047/250000]], so that it [[support]]s [[ennealimmal]]. In the [[11-limit]] it tempers out [[4000/3993]], and in the [[13-limit]], [[1575/1573]], [[2080/2079]] and [[4096/4095]]. It provides the [[optimal patent val]] for 11- and [[13-limit]] [[Ragismic microtemperaments #Ennealimmal|semiennealimmal]], the {{nowrap| 72 & 369f }} temperament, and for the 7-limit {{nowrap| 41 & 400 }} temperament. Since it tempers out 1575/1573, the nicola, it allows the [[nicolic chords]] in the [[15-odd-limit]].


441edo is a very strong [[7-limit]] system; strong enough to qualify as a [[The Riemann Zeta Function and Tuning #Zeta EDO lists|zeta peak edo]]. It is also very strong simply considered as a 5-limit system; it is the first division past [[118edo|118]] with a lower [[5-limit]] [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]. In the 5-limit It [[tempering out|tempers out]] the [[hemithirds comma]], {{monzo| 38 -2 -15 }}, the [[ennealimma]], {{monzo| 1 -27 18 }}, whoosh, {{monzo| 37 25 -33 }}, and egads, {{monzo| -36 -52 51 }}. In the 7-limit it tempers out [[2401/2400]], [[4375/4374]], [[420175/419904]] and [[250047/250000]], so that it [[support]]s [[Ragismic microtemperaments #Ennealimmal|ennealimmal temperament]]. In the [[11-limit]] it tempers out [[4000/3993]], and in the 13-limit, [[1575/1573]], [[2080/2079]] and [[4096/4095]]. It provides the [[optimal patent val]] for 11- and [[13-limit]] [[Ragismic microtemperaments #Ennealimmal|semiennealimmal temperament]], and the 7-limit 41&359 temperament. Since it tempers out 1575/1573, the nicola, it allows the [[nicolic tetrad]].
The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like [[205edo]] but even more accurately, 441 can be used as a basis for a Vicentino style "adaptive JI" system.  


The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like [[205edo]] but even more accurately, 441 can be used as a basis for a Vicentino style "adaptive JI" system.
One step of 441edo is also of a size close to [[625/624]], the tunbarsma.


441 factors into primes as 3<sup>2</sup> × 7<sup>2</sup>, and has divisors {{EDOs|3, 7, 9, 21, 49, 63 and 147}}.
=== Prime harmonics ===
{{Harmonics in equal|441|prec=3}}


=== Prime harmonics ===
=== Subsets and supersets ===
{{Harmonics in equal|441|prec=3|columns=11}}
441 factors into primes as {{nowrap| 3<sup>2</sup> × 7<sup>2</sup> }}, and 441edo has subset edos {{EDOs| 3, 7, 9, 21, 49, 63 and 147 }}.
 
[[882edo]], which doubles it, gives an alternative mapping for harmonics 11 and 17. [[1323edo]], which divides the edostep into three, is the smallest distinctly consistent edo in the 29-odd-limit and thus provides good correction for prime harmonics from 11 to 29.


== Selected intervals ==
== Selected intervals ==
{| class="wikitable"
{| class="wikitable"
|+Selected intervals
|+ style="font-size; 105%;" | Selected intervals
|-
! Step
! Step
! Eliora's Naming System
! Eliora's naming system
! Asosociated Ratio
! Asosociated ratio
|-
|-
| 0
| 0
Line 71: Line 76:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
Line 81: Line 87:
|-
|-
| 2.3.5
| 2.3.5
| {{monzo| 38 -2 -15 }}, {{monzo| 1 -27 18 }}
| {{Monzo| 38 -2 -15 }}, {{monzo| 1 -27 18 }}
| [{{val| 441 699 1024 }}]
| {{Mapping| 441 699 1024 }}
| -0.0297
| −0.0297
| 0.0224
| 0.0224
| 0.82
| 0.82
Line 89: Line 95:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 4375/4374, {{monzo| 38 -2 -15 }}
| 2401/2400, 4375/4374, {{monzo| 38 -2 -15 }}
| [{{val| 441 699 1024 1238 }}]
| {{Mapping| 441 699 1024 1238 }}
| -0.0117
| −0.0117
| 0.0367
| 0.0367
| 1.35
| 1.35
Line 96: Line 102:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 4000/3993, 4375/4374, 131072/130977
| 2401/2400, 4000/3993, 4375/4374, 131072/130977
| [{{val| 441 699 1024 1238 1526 }}]
| {{Mapping| 441 699 1024 1238 1526 }}
| -0.0708
| −0.0708
| 0.1227
| 0.1227
| 4.51
| 4.51
Line 103: Line 109:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 1575/1573, 2080/2079, 2401/2400, 4096/4095, 4375/4374
| 1575/1573, 2080/2079, 2401/2400, 4096/4095, 4375/4374
| [{{val| 441 699 1024 1238 1526 1632 }}]
| {{Mapping| 441 699 1024 1238 1526 1632 }}
| -0.0720
| −0.0720
| 0.1120
| 0.1120
| 4.12
| 4.12
Line 110: Line 116:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 936/935, 1225/1224, 1575/1573, 1701/1700, 2025/2023, 4096/4095
| 936/935, 1225/1224, 1575/1573, 1701/1700, 2025/2023, 4096/4095
| [{{val| 441 699 1024 1238 1526 1632 1803 }}]
| {{Mapping| 441 699 1024 1238 1526 1632 1803 }}
| -0.1025
| −0.1025
| 0.1278
| 0.1278
| 4.70
| 4.70
|}
|}
* 441et has a lower relative error than any previous equal temperaments in the 5-limit, past [[118edo|118]] and before [[559edo|559]].
* 441et is also notable in the 7-limit, where it has a lower absolute error than any previous equal temperaments, past [[171edo|171]] and before [[612edo|612]].


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br>per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Temperaments
! Associated<br>ratio*
! Temperament
|-
|-
| 1
| 1
Line 129: Line 138:
| 193.20
| 193.20
| 262144/234375
| 262144/234375
| [[Luna]] / [[lunatic]]
| [[Lunatic]]
|-
|-
| 1
| 1
| 95\441
| 95\441
| 258.50
| 258.50
| {{monzo| -32 13 5 }}
| {{Monzo| -32 13 5 }}
| [[Lafa]]
| [[Lafa]]
|-
|-
Line 159: Line 168:
| 565.99
| 565.99
| 104/75
| 104/75
| [[Tricot]] / [[trillium]]
| [[Alphatrillium]]
|-
|-
| 7
| 7
Line 185: Line 194:
| [[Akjayland]]
| [[Akjayland]]
|}
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Scales ==
== Scales ==
Scales used in Etude in G Akjayland, in order of size:
Scales used in ''Etude in G Akjayland'', in order of size:
 
* Balzano-200[9]: 77 41 41 41 77 41 41 41 41 ([[2L 7s]], generator = 200\441)
* Balzano-200[9]: 77 41 41 41 77 41 41 41 41 ([[2L 7s]], generator = 200\441)
* OEIS-A163205[11]: 9 12 24 4 44 12 84 28 8 156 60 (rank 10)
* OEIS-A163205[11]: 9 12 24 4 44 12 84 28 8 156 60 (rank 10)
* Lafa[14]: 34 34 27 34 34 27 34 34 27 34 34 27 34 27 - [[9L 5s]] (m-chro semiquartal)
* Lafa[14]: 34 34 27 34 34 27 34 34 27 34 34 27 34 27 [[9L 5s]] (m-chro semiquartal)
* Ennealimmal[27]: 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 (18L 9s)
* Ennealimmal[27]: 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 (18L 9s)
* Akjayland[84]: 6 5 5 5, repeated 21 times
* Akjayland[84]: 6 5 5 5, repeated 21 times


== Music ==
== Music ==
* [https://www.youtube.com/watch?v=j3sq5jkFjUE Etude in G Akjayland for Piano and Tribal Pan, Op. 1, No. 3] by [[Eliora]]
; [[Eliora]]
* [https://www.youtube.com/watch?v=j3sq5jkFjUE ''Etude in G Akjayland for Piano and Tribal Pan''] (2022)


[[Category:441edo]]
; [[Gene Ward Smith]]
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->
* ''Bodacious Breed'' (archived 2010) – [http://www.archive.org/details/BodaciousBreed details] | [http://www.archive.org/download/BodaciousBreed/Genewardsmith-BodaciousBreed.mp3 play] – breed in 441edo tuning
 
[[Category:Akjayland]]
[[Category:Ennealimmal]]
[[Category:Ennealimmal]]
[[Category:Semienealimmal]]
[[Category:Listen]]
[[Category:Luna]]
[[Category:Luna]]
[[Category:Nicolic]]
[[Category:Nicolic]]
[[Category:Zeta]]
[[Category:Semienealimmal]]
[[Category:Akjayland]]