441edo: Difference between revisions
this isn't the defining characteristic of the edo, so it's not needed in an intro. |
m Cleanup and update |
||
(13 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | == Theory == | ||
441edo is a very strong [[7-limit]] system; strong enough to qualify as a [[zeta peak edo]]. It is also very strong simply considered as a [[5-limit]] system; it is the first division past [[118edo|118]] with a lower [[5-limit]] [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]. In the 5-limit it [[tempering out|tempers out]] the [[hemithirds comma]], {{monzo| 38 -2 -15 }}, the [[ennealimma]], {{monzo| 1 -27 18 }}, whoosh, {{monzo| 37 25 -33 }}, and egads, {{monzo| -36 -52 51 }}. In the 7-limit it tempers out [[2401/2400]], [[4375/4374]], [[420175/419904]] and [[250047/250000]], so that it [[support]]s [[ennealimmal]]. In the [[11-limit]] it tempers out [[4000/3993]], and in the [[13-limit]], [[1575/1573]], [[2080/2079]] and [[4096/4095]]. It provides the [[optimal patent val]] for 11- and [[13-limit]] [[Ragismic microtemperaments #Ennealimmal|semiennealimmal]], the {{nowrap| 72 & 369f }} temperament, and for the 7-limit {{nowrap| 41 & 400 }} temperament. Since it tempers out 1575/1573, the nicola, it allows the [[nicolic chords]] in the [[15-odd-limit]]. | |||
441edo is a very strong [[7-limit]] system; strong enough to qualify as a [[ | |||
The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like [[205edo]] but even more accurately, 441 can be used as a basis for a Vicentino style "adaptive JI" system. | The steps of 441 are only 1/30 of a cent sharp of 1/8 syntonic comma. Lowering the fifth, which is only 1/12 of a cent sharp, by two steps gives a generator, 256\441, close to 1/4 comma meantone. Like [[205edo]] but even more accurately, 441 can be used as a basis for a Vicentino style "adaptive JI" system. | ||
Line 10: | Line 9: | ||
One step of 441edo is also of a size close to [[625/624]], the tunbarsma. | One step of 441edo is also of a size close to [[625/624]], the tunbarsma. | ||
441 factors into primes as 3<sup>2</sup> × 7<sup>2</sup>, and has | === Prime harmonics === | ||
{{Harmonics in equal|441|prec=3}} | |||
=== Subsets and supersets === | |||
441 factors into primes as {{nowrap| 3<sup>2</sup> × 7<sup>2</sup> }}, and 441edo has subset edos {{EDOs| 3, 7, 9, 21, 49, 63 and 147 }}. | |||
[[882edo]], which doubles it, gives an alternative mapping for harmonics 11 and 17. [[1323edo]], which divides the edostep into three, is the smallest distinctly consistent edo in the 29-odd-limit and thus provides good correction for prime harmonics from 11 to 29. | |||
== Selected intervals == | == Selected intervals == | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Selected intervals | |+ style="font-size; 105%;" | Selected intervals | ||
|- | |||
! Step | ! Step | ||
! Eliora's | ! Eliora's naming system | ||
! Asosociated | ! Asosociated ratio | ||
|- | |- | ||
| 0 | | 0 | ||
Line 73: | Line 76: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
Line 83: | Line 87: | ||
|- | |- | ||
| 2.3.5 | | 2.3.5 | ||
| {{ | | {{Monzo| 38 -2 -15 }}, {{monzo| 1 -27 18 }} | ||
| | | {{Mapping| 441 699 1024 }} | ||
| | | −0.0297 | ||
| 0.0224 | | 0.0224 | ||
| 0.82 | | 0.82 | ||
Line 91: | Line 95: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 4375/4374, {{monzo| 38 -2 -15 }} | | 2401/2400, 4375/4374, {{monzo| 38 -2 -15 }} | ||
| | | {{Mapping| 441 699 1024 1238 }} | ||
| | | −0.0117 | ||
| 0.0367 | | 0.0367 | ||
| 1.35 | | 1.35 | ||
Line 98: | Line 102: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 2401/2400, 4000/3993, 4375/4374, 131072/130977 | | 2401/2400, 4000/3993, 4375/4374, 131072/130977 | ||
| | | {{Mapping| 441 699 1024 1238 1526 }} | ||
| | | −0.0708 | ||
| 0.1227 | | 0.1227 | ||
| 4.51 | | 4.51 | ||
Line 105: | Line 109: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 1575/1573, 2080/2079, 2401/2400, 4096/4095, 4375/4374 | | 1575/1573, 2080/2079, 2401/2400, 4096/4095, 4375/4374 | ||
| | | {{Mapping| 441 699 1024 1238 1526 1632 }} | ||
| | | −0.0720 | ||
| 0.1120 | | 0.1120 | ||
| 4.12 | | 4.12 | ||
Line 112: | Line 116: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 936/935, 1225/1224, 1575/1573, 1701/1700, 2025/2023, 4096/4095 | | 936/935, 1225/1224, 1575/1573, 1701/1700, 2025/2023, 4096/4095 | ||
| | | {{Mapping| 441 699 1024 1238 1526 1632 1803 }} | ||
| | | −0.1025 | ||
| 0.1278 | | 0.1278 | ||
| 4.70 | | 4.70 | ||
|} | |} | ||
* 441et has a lower relative error than any previous equal temperaments in the 5-limit, past [[118edo|118]] and before [[559edo|559]]. | |||
* 441et is also notable in the 7-limit, where it has a lower absolute error than any previous equal temperaments, past [[171edo|171]] and before [[612edo|612]]. | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
|- | |||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br>ratio | ! Associated<br>ratio* | ||
! | ! Temperament | ||
|- | |- | ||
| 1 | | 1 | ||
Line 131: | Line 138: | ||
| 193.20 | | 193.20 | ||
| 262144/234375 | | 262144/234375 | ||
| [[ | | [[Lunatic]] | ||
|- | |- | ||
| 1 | | 1 | ||
| 95\441 | | 95\441 | ||
| 258.50 | | 258.50 | ||
| {{ | | {{Monzo| -32 13 5 }} | ||
| [[Lafa]] | | [[Lafa]] | ||
|- | |- | ||
Line 161: | Line 168: | ||
| 565.99 | | 565.99 | ||
| 104/75 | | 104/75 | ||
| [[ | | [[Alphatrillium]] | ||
|- | |- | ||
| 7 | | 7 | ||
Line 187: | Line 194: | ||
| [[Akjayland]] | | [[Akjayland]] | ||
|} | |} | ||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | == Scales == | ||
Scales used in Etude in G Akjayland, in order of size: | Scales used in ''Etude in G Akjayland'', in order of size: | ||
* Balzano-200[9]: 77 41 41 41 77 41 41 41 41 ([[2L 7s]], generator = 200\441) | * Balzano-200[9]: 77 41 41 41 77 41 41 41 41 ([[2L 7s]], generator = 200\441) | ||
* OEIS-A163205[11]: 9 12 24 4 44 12 84 28 8 156 60 (rank 10) | * OEIS-A163205[11]: 9 12 24 4 44 12 84 28 8 156 60 (rank 10) | ||
* Lafa[14]: 34 34 27 34 34 27 34 34 27 34 34 27 34 27 | * Lafa[14]: 34 34 27 34 34 27 34 34 27 34 34 27 34 27 – [[9L 5s]] (m-chro semiquartal) | ||
* Ennealimmal[27]: 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 (18L 9s) | * Ennealimmal[27]: 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 18 18 13 (18L 9s) | ||
* Akjayland[84]: 6 5 5 5, repeated 21 times | * Akjayland[84]: 6 5 5 5, repeated 21 times | ||
== Music == | == Music == | ||
* [https://www.youtube.com/watch?v=j3sq5jkFjUE Etude in G Akjayland for Piano and Tribal Pan | ; [[Eliora]] | ||
* [https://www.youtube.com/watch?v=j3sq5jkFjUE ''Etude in G Akjayland for Piano and Tribal Pan''] (2022) | |||
[[ | ; [[Gene Ward Smith]] | ||
[[Category: | * ''Bodacious Breed'' (archived 2010) – [http://www.archive.org/details/BodaciousBreed details] | [http://www.archive.org/download/BodaciousBreed/Genewardsmith-BodaciousBreed.mp3 play] – breed in 441edo tuning | ||
[[Category:Akjayland]] | |||
[[Category:Ennealimmal]] | [[Category:Ennealimmal]] | ||
[[Category: | [[Category:Listen]] | ||
[[Category:Luna]] | [[Category:Luna]] | ||
[[Category:Nicolic]] | [[Category:Nicolic]] | ||
[[Category: | [[Category:Semienealimmal]] | ||