Lumatone mapping for 28edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) m Template adds categories automatically |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 2: | Line 2: | ||
{{Lumatone EDO mapping|n=28|start=20|xstep=4|ystep=-1}} | {{Lumatone EDO mapping|n=28|start=20|xstep=4|ystep=-1}} | ||
Since the 5th harmonic is easily the best tuned interval, the [[ | |||
Since the 5th harmonic is easily the best tuned interval, the [[Würschmidt]] mapping is a good way to maximise your range and make consonant chords easy to reach. | |||
{{Lumatone EDO mapping|n=28|start=21|xstep=9|ystep=-8}} | {{Lumatone EDO mapping|n=28|start=21|xstep=9|ystep=-8}} | ||
{{Lumatone | {{Navbox Lumatone}} |
Revision as of 16:54, 11 February 2025
There are many conceivable ways to map 28edo onto the Lumatone keyboard. However, as it has multiple small rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. Instead, the most diatonic-like mapping is the whitewood one.

20
24
23
27
3
7
11
22
26
2
6
10
14
18
22
25
1
5
9
13
17
21
25
1
5
9
24
0
4
8
12
16
20
24
0
4
8
12
16
20
27
3
7
11
15
19
23
27
3
7
11
15
19
23
27
3
7
26
2
6
10
14
18
22
26
2
6
10
14
18
22
26
2
6
10
14
18
1
5
9
13
17
21
25
1
5
9
13
17
21
25
1
5
9
13
17
21
25
1
5
0
4
8
12
16
20
24
0
4
8
12
16
20
24
0
4
8
12
16
20
24
0
4
8
12
16
7
11
15
19
23
27
3
7
11
15
19
23
27
3
7
11
15
19
23
27
3
7
11
15
19
23
27
3
18
22
26
2
6
10
14
18
22
26
2
6
10
14
18
22
26
2
6
10
14
18
22
26
2
6
5
9
13
17
21
25
1
5
9
13
17
21
25
1
5
9
13
17
21
25
1
5
9
16
20
24
0
4
8
12
16
20
24
0
4
8
12
16
20
24
0
4
8
3
7
11
15
19
23
27
3
7
11
15
19
23
27
3
7
11
14
18
22
26
2
6
10
14
18
22
26
2
6
10
1
5
9
13
17
21
25
1
5
9
13
12
16
20
24
0
4
8
12
27
3
7
11
15
10
14
Since the 5th harmonic is easily the best tuned interval, the Würschmidt mapping is a good way to maximise your range and make consonant chords easy to reach.

21
2
22
3
12
21
2
14
23
4
13
22
3
12
21
15
24
5
14
23
4
13
22
3
12
21
7
16
25
6
15
24
5
14
23
4
13
22
3
12
8
17
26
7
16
25
6
15
24
5
14
23
4
13
22
3
12
0
9
18
27
8
17
26
7
16
25
6
15
24
5
14
23
4
13
22
3
1
10
19
0
9
18
27
8
17
26
7
16
25
6
15
24
5
14
23
4
13
22
3
21
2
11
20
1
10
19
0
9
18
27
8
17
26
7
16
25
6
15
24
5
14
23
4
13
22
3
12
21
2
11
20
1
10
19
0
9
18
27
8
17
26
7
16
25
6
15
24
5
14
23
4
13
22
22
3
12
21
2
11
20
1
10
19
0
9
18
27
8
17
26
7
16
25
6
15
24
5
14
23
22
3
12
21
2
11
20
1
10
19
0
9
18
27
8
17
26
7
16
25
6
15
24
13
22
3
12
21
2
11
20
1
10
19
0
9
18
27
8
17
26
7
16
13
22
3
12
21
2
11
20
1
10
19
0
9
18
27
8
17
4
13
22
3
12
21
2
11
20
1
10
19
0
9
4
13
22
3
12
21
2
11
20
1
10
23
4
13
22
3
12
21
2
23
4
13
22
3
14
23