487edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
m Partial undo
ArrowHead294 (talk | contribs)
mNo edit summary
Line 3: Line 3:


== Theory ==
== Theory ==
487edo is [[consistency|distinctly consistent]] to the [[13-odd-limit]]. The equal temperament [[tempering out|tempers out]] {{monzo| 24 -21 4 }} ([[vulture comma]]) and {{monzo| 55 -1 -23 }} (counterwürschmidt comma) in the 5-limit, 4375/4374 ([[ragisma]]), 235298/234375 ([[triwellisma]]), and 33554432/33480783 ([[garischisma]]) in the 7-limit, [[5632/5625]], [[12005/11979]], [[19712/19683]], [[41503/41472]] in the 11-limit, [[676/675]], [[1001/1000]], [[2080/2079]], [[4096/4095]], and [[4225/4224]] in the 13-limit. It supports [[semidimfourth]], [[seniority]], and [[vulture]].  
487edo is [[consistency|distinctly consistent]] to the [[13-odd-limit]]. It [[tempers out]] {{monzo| 24 -21 4 }} ([[vulture comma]]) and {{monzo| 55 -1 -23 }} (counterwürschmidt comma) in the 5-limit, 4375/4374 ([[ragisma]]), 235298/234375 ([[triwellisma]]), and 33554432/33480783 ([[garischisma]]) in the 7-limit, [[5632/5625]], [[12005/11979]], [[19712/19683]], [[41503/41472]] in the 11-limit, [[676/675]], [[1001/1000]], [[2080/2079]], [[4096/4095]], and [[4225/4224]] in the 13-limit. It supports [[semidimfourth]], [[seniority]], and [[vulture]].  


=== Prime harmonics ===
=== Prime harmonics ===
Line 26: Line 26:
| {{monzo| 772 -487 }}
| {{monzo| 772 -487 }}
| {{mapping| 487 772 }}
| {{mapping| 487 772 }}
| −0.0958
| −0.0958
| 0.0958
| 0.0958
| 3.89
| 3.89
Line 33: Line 33:
| {{monzo| 24 -21 4 }}, {{monzo| 55 -1 -23 }}
| {{monzo| 24 -21 4 }}, {{monzo| 55 -1 -23 }}
| {{mapping| 487 772 1131 }}
| {{mapping| 487 772 1131 }}
| −0.1421
| −0.1421
| 0.1020
| 0.1020
| 4.14
| 4.14
Line 40: Line 40:
| 4375/4374, 235298/234375, 33554432/33480783
| 4375/4374, 235298/234375, 33554432/33480783
| {{mapping| 487 772 1131 1367 }}
| {{mapping| 487 772 1131 1367 }}
| −0.0667
| −0.0667
| 0.1577
| 0.1577
| 6.40
| 6.40
Line 47: Line 47:
| 4375/4374, 5632/5625, 12005/11979, 41503/41472
| 4375/4374, 5632/5625, 12005/11979, 41503/41472
| {{mapping| 487 772 1131 1367 1685 }}
| {{mapping| 487 772 1131 1367 1685 }}
| −0.0899
| −0.0899
| 0.1485
| 0.1485
| 6.03
| 6.03
Line 54: Line 54:
| 676/675, 1001/1000, 4096/4095, 4375/4374, 12005/11979
| 676/675, 1001/1000, 4096/4095, 4375/4374, 12005/11979
| {{mapping| 487 772 1131 1367 1685 1802 }}
| {{mapping| 487 772 1131 1367 1685 1802 }}
| −0.0623
| −0.0623
| 0.1490
| 0.1490
| 6.05
| 6.05
Line 105: Line 105:
| [[Tritriple]] (5-limit)
| [[Tritriple]] (5-limit)
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Scales ==
== Scales ==

Revision as of 18:55, 15 January 2025

← 486edo 487edo 488edo →
Prime factorization 487 (prime)
Step size 2.46407 ¢ 
Fifth 285\487 (702.259 ¢)
Semitones (A1:m2) 47:36 (115.8 ¢ : 88.71 ¢)
Consistency limit 13
Distinct consistency limit 13

Template:EDO intro

Theory

487edo is distinctly consistent to the 13-odd-limit. It tempers out [24 -21 4 (vulture comma) and [55 -1 -23 (counterwürschmidt comma) in the 5-limit, 4375/4374 (ragisma), 235298/234375 (triwellisma), and 33554432/33480783 (garischisma) in the 7-limit, 5632/5625, 12005/11979, 19712/19683, 41503/41472 in the 11-limit, 676/675, 1001/1000, 2080/2079, 4096/4095, and 4225/4224 in the 13-limit. It supports semidimfourth, seniority, and vulture.

Prime harmonics

Approximation of prime harmonics in 487edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.30 +0.54 -0.45 +0.63 -0.28 +1.00 +0.64 +0.06 +0.40 +0.75
Relative (%) +0.0 +12.3 +22.1 -18.2 +25.7 -11.4 +40.6 +25.9 +2.5 +16.3 +30.6
Steps
(reduced)
487
(0)
772
(285)
1131
(157)
1367
(393)
1685
(224)
1802
(341)
1991
(43)
2069
(121)
2203
(255)
2366
(418)
2413
(465)

Subsets and supersets

487edo is the 93rd prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [772 -487 [487 772]] −0.0958 0.0958 3.89
2.3.5 [24 -21 4, [55 -1 -23 [487 772 1131]] −0.1421 0.1020 4.14
2.3.5.7 4375/4374, 235298/234375, 33554432/33480783 [487 772 1131 1367]] −0.0667 0.1577 6.40
2.3.5.7.11 4375/4374, 5632/5625, 12005/11979, 41503/41472 [487 772 1131 1367 1685]] −0.0899 0.1485 6.03
2.3.5.7.11.13 676/675, 1001/1000, 4096/4095, 4375/4374, 12005/11979 [487 772 1131 1367 1685 1802]] −0.0623 0.1490 6.05

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 131\487 322.79 3087/2560 Seniority
1 157\487 386.86 5/4 Counterwürschmidt
1 182\487 448.46 35/27 Semidimfourth
1 193\487 475.56 320/243 Vulture
1 202\487 497.74 4/3 Gary
1 227\487 559.34 864/625 Tritriple (5-limit)

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Scales