467edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|467}} == Theory == 467et is consistent to thr 9-odd-limit. Using the patent val, it tempers out 4375/4374, 1640558367/1638400000, 52509..."
(No difference)

Revision as of 15:35, 15 February 2024

← 466edo 467edo 468edo →
Prime factorization 467 (prime)
Step size 2.56959 ¢ 
Fifth 273\467 (701.499 ¢)
Semitones (A1:m2) 43:36 (110.5 ¢ : 92.51 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

467et is consistent to thr 9-odd-limit. Using the patent val, it tempers out 4375/4374, 1640558367/1638400000, 5250987/5242880 and 2100875/2097152 in the 7-limit; 25165824/25109315, 1019215872/1019046875, 2097152/2096325, 26214400/26198073, 104162436/103984375, 166698/166375, 12005/11979, 151263/151250, 117649/117612, 514714375/514434888, 226492416/226474325, 104857600/104825259, 472392/471625, 540/539, 6250/6237, 1953125/1948617, 825000/823543, 85937500/85766121, 47265625/47258883 and 9453125/9437184 in the 11-limit. It supports counterkleismic and minos.

Odd harmonics

Approximation of odd harmonics in 467edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.46 -0.87 -0.09 -0.91 +1.14 -0.27 +1.24 +0.40 +0.56 -0.55 +1.28
Relative (%) -17.7 -34.0 -3.5 -35.5 +44.5 -10.5 +48.2 +15.5 +21.8 -21.2 +49.7
Steps
(reduced)
740
(273)
1084
(150)
1311
(377)
1480
(79)
1616
(215)
1728
(327)
1825
(424)
1909
(41)
1984
(116)
2051
(183)
2113
(245)

Subsets and supersets

467edo is the 91st prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-740 467 467 740] 0.1439 0.1439 5.38
2.3.5 [-36 11 8, [-16 35 -17 467 740 1084] 0.2215 0.1608 6.02
2.3.5.7 4375/4374, 2100875/2097152, 5250987/5242880 467 740 1084 1311] 0.1741 0.1617 6.05

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 71\467 182.441 10/9 Minortone / Mitonic
1 123\467 316.060 6/5 Counterhanson

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct