467edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{Infobox ET}} {{EDO intro|467}} == Theory == 467et is consistent to thr 9-odd-limit. Using the patent val, it tempers out 4375/4374, 1640558367/1638400000, 52509..." |
(No difference)
|
Revision as of 15:35, 15 February 2024
← 466edo | 467edo | 468edo → |
Theory
467et is consistent to thr 9-odd-limit. Using the patent val, it tempers out 4375/4374, 1640558367/1638400000, 5250987/5242880 and 2100875/2097152 in the 7-limit; 25165824/25109315, 1019215872/1019046875, 2097152/2096325, 26214400/26198073, 104162436/103984375, 166698/166375, 12005/11979, 151263/151250, 117649/117612, 514714375/514434888, 226492416/226474325, 104857600/104825259, 472392/471625, 540/539, 6250/6237, 1953125/1948617, 825000/823543, 85937500/85766121, 47265625/47258883 and 9453125/9437184 in the 11-limit. It supports counterkleismic and minos.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.46 | -0.87 | -0.09 | -0.91 | +1.14 | -0.27 | +1.24 | +0.40 | +0.56 | -0.55 | +1.28 |
Relative (%) | -17.7 | -34.0 | -3.5 | -35.5 | +44.5 | -10.5 | +48.2 | +15.5 | +21.8 | -21.2 | +49.7 | |
Steps (reduced) |
740 (273) |
1084 (150) |
1311 (377) |
1480 (79) |
1616 (215) |
1728 (327) |
1825 (424) |
1909 (41) |
1984 (116) |
2051 (183) |
2113 (245) |
Subsets and supersets
467edo is the 91st prime edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-740 467⟩ | ⟨467 740] | 0.1439 | 0.1439 | 5.38 |
2.3.5 | [-36 11 8⟩, [-16 35 -17⟩ | ⟨467 740 1084] | 0.2215 | 0.1608 | 6.02 |
2.3.5.7 | 4375/4374, 2100875/2097152, 5250987/5242880 | ⟨467 740 1084 1311] | 0.1741 | 0.1617 | 6.05 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 71\467 | 182.441 | 10/9 | Minortone / Mitonic |
1 | 123\467 | 316.060 | 6/5 | Counterhanson |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct