1051edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|1051}} == Theory == 1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376..."
(No difference)

Revision as of 19:24, 7 May 2023

← 1050edo 1051edo 1052edo →
Prime factorization 1051 (prime)
Step size 1.14177 ¢ 
Fifth 615\1051 (702.188 ¢)
Semitones (A1:m2) 101:78 (115.3 ¢ : 89.06 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376/184528125, 43923/43904 and 20614528/20588575 in the 11-limit. From a regular temperament perspective, 1051edo only has a consistency limit of 3 and does poorly with approximating the harmonics 5 and 7. However, 1051edo has a good representation of the 2.3.11.13.15.17.19.35 subgroup.

Odd harmonics

Approximation of odd harmonics in 1051edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.233 -0.396 +0.537 +0.467 +0.157 -0.185 -0.162 +0.087 +0.489 -0.372 -0.301
Relative (%) +20.4 -34.6 +47.0 +40.9 +13.7 -16.2 -14.2 +7.7 +42.8 -32.6 -26.4
Steps
(reduced)
1666
(615)
2440
(338)
2951
(849)
3332
(179)
3636
(483)
3889
(736)
4106
(953)
4296
(92)
4465
(261)
4616
(412)
4754
(550)

Subsets and supersets

1051edo is the 177th prime edo. 2102edo, which doubles it, gives a good correction to the harmonic 5. 4212edo, which quadruples it, gives a good correction to the harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [1666 -1051 1051 1666] -0.0736 0.0736 6.45
2.3.15 [-68 1 17, [42 -61 14 1051 1666 4106] -0.0353 0.0810 7.09
2.3.15.35 2460375/2458624, 4096000/4084101, 299072265625/297538935552 1051 1666 4106 5391] -0.0333 0.0702 6.15
2.3.15.35.11 6250/6237, 180224/180075, 2460375/2458624, 43923/43904 1051 1666 4106 5391 3636] -0.0357 0.0630 5.52
2.3.15.35.11.13 1716/1715, 4096/4095, 6250/6237, 91125/91091, 6656/6655 1051 1666 4106 5391 3636 3889] -0.0214 0.0658 5.76
2.3.15.35.11.13.17 1275/1274, 1716/1715, 2431/2430, 4096/4095, 6250/6237, 6656/6655 1051 1666 4106 5391 3636 3889 4296] -0.0214 0.0609 5.33
2.3.15.35.11.13.17.19 1540/1539, 1275/1274, 1716/1715, 2431/2430, 4096/4095, 6250/6237, 41800/41769 1051 1666 4106 5391 3636 3889 4296 4465] -0.0331 0.0648 5.68

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 435\1051 496.67 5457/4096 Edson

Music