Monotonicity levels of small EDOs
Jump to navigation
Jump to search
An EDO N is monotone with respect to a set of rational numbers S if there exists a mapping for N that preserves each elements's size order. If S is the q-odd-limit diamond, we say N is q-odd-limit monotone. Below is a table of every EDO up to 72.
EDO | Monotonicity Level |
Associated Vals |
---|---|---|
1 | 3 | 1 |
2 | 5 | 2 |
3 | 5 | 3 |
4 | 7 | 4 |
5 | 9 | 5 |
6 | 7 | 6 |
7 | 5 | 7 or 7c |
8 | 7 | 8d |
9 | 7 | 9 |
10 | 9 | 10 or 10c [5] |
11 | 7 | 11b |
12 | 11 | 12 |
13 | 7 | 13b |
14 | 13 | 14c |
15 | 13 | 15 |
16 | 7 | 16 |
17 | 15 | 17c |
18 | 7 | 18 or 18bd [9] |
19 | 17 | 19 |
20 | 9 | 20c |
21 | 7 | 21 |
22 | 15 | 22f |
23 | 7 | 23bc |
24 | 13 | 24 |
25 | 9 | 25 or 25c |
26 | 13 | 26 |
27 | 15 | 27e |
28 | 13 | 28ccde [14c] |
29 | 15 | 29 |
30 | 13 | 30f [15] |
31 | 17 | 31 |
32 | 13 | 32cf |
33 | 13 | 33cd |
34 | 19 | 34d |
35 | 9 | 35b, 35bc, etc. |
36 | 15 | 36 |
37 | 15 | 37 |
38 | 19 | 38df |
39 | 15 | 39df |
40 | 13 | 40c |
41 | 21 | 41 |
42 | 13 | 42ef |
43 | 17 | 43 |
44 | 19 | 44 |
45 | 13 | 45ef |
46 | 17 | 46 |
47 | 13 | 47ccde or 47bcff |
48 | 21 | 48c |
49 | 15 | 49f |
50 | 19 | 50 |
51 | 15 | 51 |
52 | 13 | 52c [26] |
53 | 23 | 53e |
54 | 15 | 54c or 54cee [27e] |
55 | 17 | 55f |
56 | 21 | 56 |
57 | 17 | 57ddf or 57ddefgg [19] |
58 | 23 | 58hi |
59 | 15 | 59f |
60 | 23 | 60e |
61 | 15 | 61d |
62 | 25 | 62 |
63 | 19 | 63 |
64 | 15 | 64be |
65 | 25 | 65d |
66 | 15 | 66 or 66cdef |
67 | 17 | 67 |
68 | 27 | 68e |
69 | 17 | 69de, 69d, or 69dg |
70 | 21 | 70cd |
71 | 15 | 71d |
72 | 29 | 72 |