10L 3s (19/9-equivalent)
(Redirected from Greater luachoid)
Jump to navigation
Jump to search
↖ 9L 2s⟨19/9⟩ | ↑ 10L 2s⟨19/9⟩ | 11L 2s⟨19/9⟩ ↗ |
← 9L 3s⟨19/9⟩ | 10L 3s (19/9-equivalent) | 11L 3s⟨19/9⟩ → |
↙ 9L 4s⟨19/9⟩ | ↓ 10L 4s⟨19/9⟩ | 11L 4s⟨19/9⟩ ↘ |
┌╥╥╥╥┬╥╥╥┬╥╥╥┬┐ │║║║║│║║║│║║║││ │││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLsLLLsLLLL
10L 3s⟨19/9⟩ is a 19/9-equivalent (non-octave) moment of symmetry scale containing 10 large steps and 3 small steps, repeating every interval of 19/9 (1293.6¢). Generators that produce this scale range from 895.6¢ to 905.5¢, or from 388.1¢ to 398¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
12|0 | 1 | LLLLsLLLsLLLs |
11|1 | 10 | LLLsLLLLsLLLs |
10|2 | 6 | LLLsLLLsLLLLs |
9|3 | 2 | LLLsLLLsLLLsL |
8|4 | 11 | LLsLLLLsLLLsL |
7|5 | 7 | LLsLLLsLLLLsL |
6|6 | 3 | LLsLLLsLLLsLL |
5|7 | 12 | LsLLLLsLLLsLL |
4|8 | 8 | LsLLLsLLLLsLL |
3|9 | 4 | LsLLLsLLLsLLL |
2|10 | 13 | sLLLLsLLLsLLL |
1|11 | 9 | sLLLsLLLLsLLL |
0|12 | 5 | sLLLsLLLsLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 99.5¢ |
Major 1-mosstep | M1ms | L | 99.5¢ to 129.4¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 129.4¢ to 199.0¢ |
Major 2-mosstep | M2ms | 2L | 199.0¢ to 258.7¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 258.7¢ to 298.5¢ |
Major 3-mosstep | M3ms | 3L | 298.5¢ to 388.1¢ | |
4-mosstep | Perfect 4-mosstep | P4ms | 3L + s | 388.1¢ to 398.0¢ |
Augmented 4-mosstep | A4ms | 4L | 398.0¢ to 517.4¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 388.1¢ to 497.5¢ |
Major 5-mosstep | M5ms | 4L + s | 497.5¢ to 517.4¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 4L + 2s | 517.4¢ to 597.0¢ |
Major 6-mosstep | M6ms | 5L + s | 597.0¢ to 646.8¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 5L + 2s | 646.8¢ to 696.6¢ |
Major 7-mosstep | M7ms | 6L + s | 696.6¢ to 776.2¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 6L + 2s | 776.2¢ to 796.1¢ |
Major 8-mosstep | M8ms | 7L + s | 796.1¢ to 905.5¢ | |
9-mosstep | Diminished 9-mosstep | d9ms | 6L + 3s | 776.2¢ to 895.6¢ |
Perfect 9-mosstep | P9ms | 7L + 2s | 895.6¢ to 905.5¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 7L + 3s | 905.5¢ to 995.1¢ |
Major 10-mosstep | M10ms | 8L + 2s | 995.1¢ to 1034.9¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 8L + 3s | 1034.9¢ to 1094.6¢ |
Major 11-mosstep | M11ms | 9L + 2s | 1094.6¢ to 1164.2¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 9L + 3s | 1164.2¢ to 1194.1¢ |
Major 12-mosstep | M12ms | 10L + 2s | 1194.1¢ to 1293.6¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 10L + 3s | 1293.6¢ |
Scale tree
Generator(ed19/9) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
9\13 | 895.571 | 398.032 | 1:1 | 1.000 | Equalized 10L 3s⟨19/9⟩ | |||||
52\75 | 896.898 | 396.705 | 6:5 | 1.200 | ||||||
43\62 | 897.176 | 396.427 | 5:4 | 1.250 | ||||||
77\111 | 897.364 | 396.239 | 9:7 | 1.286 | ||||||
34\49 | 897.602 | 396.001 | 4:3 | 1.333 | Supersoft 10L 3s⟨19/9⟩ | |||||
93\134 | 897.799 | 395.804 | 11:8 | 1.375 | ||||||
59\85 | 897.913 | 395.690 | 7:5 | 1.400 | ||||||
84\121 | 898.038 | 395.565 | 10:7 | 1.429 | ||||||
25\36 | 898.335 | 395.268 | 3:2 | 1.500 | Soft 10L 3s⟨19/9⟩ | |||||
91\131 | 898.610 | 394.993 | 11:7 | 1.571 | ||||||
66\95 | 898.714 | 394.889 | 8:5 | 1.600 | ||||||
107\154 | 898.802 | 394.801 | 13:8 | 1.625 | ||||||
41\59 | 898.944 | 394.659 | 5:3 | 1.667 | Semisoft 10L 3s⟨19/9⟩ | |||||
98\141 | 899.100 | 394.503 | 12:7 | 1.714 | ||||||
57\82 | 899.212 | 394.391 | 7:4 | 1.750 | ||||||
73\105 | 899.362 | 394.241 | 9:5 | 1.800 | ||||||
16\23 | 899.898 | 393.705 | 2:1 | 2.000 | Basic 10L 3s⟨19/9⟩ Scales with tunings softer than this are proper | |||||
71\102 | 900.449 | 393.154 | 9:4 | 2.250 | ||||||
55\79 | 900.610 | 392.993 | 7:3 | 2.333 | ||||||
94\135 | 900.731 | 392.872 | 12:5 | 2.400 | ||||||
39\56 | 900.902 | 392.701 | 5:2 | 2.500 | Semihard 10L 3s⟨19/9⟩ | |||||
101\145 | 901.061 | 392.542 | 13:5 | 2.600 | ||||||
62\89 | 901.162 | 392.441 | 8:3 | 2.667 | ||||||
85\122 | 901.281 | 392.322 | 11:4 | 2.750 | ||||||
23\33 | 901.602 | 392.001 | 3:1 | 3.000 | Hard 10L 3s⟨19/9⟩ | |||||
76\109 | 901.962 | 391.641 | 10:3 | 3.333 | ||||||
53\76 | 902.118 | 391.485 | 7:2 | 3.500 | ||||||
83\119 | 902.261 | 391.342 | 11:3 | 3.667 | ||||||
30\43 | 902.514 | 391.089 | 4:1 | 4.000 | Superhard 10L 3s⟨19/9⟩ | |||||
67\96 | 902.827 | 390.776 | 9:2 | 4.500 | ||||||
37\53 | 903.081 | 390.522 | 5:1 | 5.000 | ||||||
44\63 | 903.469 | 390.134 | 6:1 | 6.000 | ||||||
7\10 | 905.522 | 388.081 | 1:0 | → ∞ | Collapsed 10L 3s⟨19/9⟩ |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |