80edn
Jump to navigation
Jump to search
Prime factorization
24 × 5
Step size
21.6404¢
Octave
55\80edn (1190.22¢) (→11\16edn)
Twelfth
88\80edn (1904.36¢) (→11\10edn)
Consistency limit
2
Distinct consistency limit
2
← 79edn | 80edn | 81edn → |
80 equal divisions of the natave (80edn, 80ede) is a tuning that divides the natave, e/1 into steps of 21.640 cents each, a size close to 81/80, the syntonic comma. The step size arises from the limit definition of the number e.
Theory
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.78 | +2.40 | +5.30 | +7.08 | +3.64 | -4.24 | +7.42 | +9.63 | +3.47 | -8.30 |
Relative (%) | -45.2 | +11.1 | +24.5 | +32.7 | +16.8 | -19.6 | +34.3 | +44.5 | +16.0 | -38.4 | |
Steps (reduced) |
55 (55) |
88 (8) |
129 (49) |
156 (76) |
192 (32) |
205 (45) |
227 (67) |
236 (76) |
251 (11) |
269 (29) |
80edn is approximates the 3.5.11.13.23 subgroup well. It can also be used as a dual-2 tuning for the full 17-limit.
In the 2.3.5.11.13 subgroup on the minor octave it shares the mapping with the 55bcceeeff val in 55edo, and tempers out 100/99, 256/243, 624/605, 704/675.