7ed13

From Xenharmonic Wiki
Jump to navigation Jump to search
← 6ed13 7ed13 8ed13 →
Prime factorization 7 (prime)
Step size 634.361¢ 
Octave 2\7ed13 (1268.72¢)
(semiconvergent)
Twelfth 3\7ed13 (1903.08¢)
(convergent)
Consistency limit 4
Distinct consistency limit 3

7 equal divisions of the 13th harmonic (abbreviated 7ed13) is a nonoctave tuning system that divides the interval of 13/1 into 7 equal parts of about 634 ¢ each. Each step represents a frequency ratio of 131/7, or the 7th root of 13.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 634.4 10/7, 13/9, 16/11, 17/12, 19/13
2 1268.7 15/7, 17/8, 19/9, 21/10
3 1903.1 3/1
4 2537.4 13/3, 17/4
5 3171.8 19/3
6 3806.2 9/1
7 4440.5

Harmonics

Approximation of harmonics in 7ed13
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +69 +1 +137 -249 +70 -197 +206 +2 -180 +289 +139
Relative (%) +10.8 +0.2 +21.7 -39.2 +11.0 -31.1 +32.5 +0.4 -28.4 +45.6 +21.8
Steps
(reduced)
2
(2)
3
(3)
4
(4)
4
(4)
5
(5)
5
(5)
6
(6)
6
(6)
6
(6)
7
(0)
7
(0)
Approximation of harmonics in 7ed13
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +0 -128 -248 +275 +170 +71 -23 -111 -196 -276 +281
Relative (%) +0.0 -20.2 -39.1 +43.3 +26.8 +11.2 -3.6 -17.6 -30.9 -43.6 +44.3
Steps
(reduced)
7
(0)
7
(0)
7
(0)
8
(1)
8
(1)
8
(1)
8
(1)
8
(1)
8
(1)
8
(1)
9
(2)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.