29ed5/2

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 28ed5/2 29ed5/2 30ed5/2 →
Prime factorization 29 (prime)
Step size 54.7005¢ 
Octave 22\29ed5/2 (1203.41¢)
(semiconvergent)
Twelfth 35\29ed5/2 (1914.52¢)
Consistency limit 12
Distinct consistency limit 6

29 equal divisions of 5/2 (abbreviated 29ed5/2) is a nonoctave tuning system that divides the interval of 5/2 into 29 equal parts of about 54.7 ¢ each. Each step represents a frequency ratio of (5/2)1/29, or the 29th root of 5/2.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 54.7
2 109.401 15/14, 16/15, 17/16, 18/17
3 164.101 11/10
4 218.802 17/15, 25/22, 26/23
5 273.502 7/6, 20/17
6 328.203 17/14, 23/19
7 382.903 5/4
8 437.604 9/7, 22/17
9 492.304 4/3
10 547.005 11/8, 15/11, 26/19
11 601.705 17/12, 24/17
12 656.406 16/11, 19/13, 22/15
13 711.106 3/2
14 765.807 14/9, 25/16
15 820.507 8/5
16 875.208 5/3
17 929.908 12/7
18 984.609 23/13
19 1039.309 11/6, 20/11
20 1094.009 15/8, 17/9
21 1148.71
22 1203.41 2/1
23 1258.111
24 1312.811 15/7, 17/8
25 1367.512 11/5
26 1422.212 16/7, 25/11
27 1476.913 7/3
28 1531.613 17/7
29 1586.314 5/2

Harmonics

Approximation of harmonics in 29ed5/2
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.4 +12.6 +6.8 +3.4 +16.0 +22.6 +10.2 +25.1 +6.8 +5.9 +19.4
Relative (%) +6.2 +23.0 +12.5 +6.2 +29.2 +41.3 +18.7 +45.9 +12.5 +10.8 +35.4
Steps
(reduced)
22
(22)
35
(6)
44
(15)
51
(22)
57
(28)
62
(4)
66
(8)
70
(12)
73
(15)
76
(18)
79
(21)
Approximation of harmonics in 29ed5/2
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -9.8 +26.0 +16.0 +13.6 +18.1 -26.2 -10.4 +10.2 -19.5 +9.3 -12.9
Relative (%) -17.9 +47.6 +29.2 +24.9 +33.1 -47.8 -19.0 +18.7 -35.7 +17.1 -23.6
Steps
(reduced)
81
(23)
84
(26)
86
(28)
88
(1)
90
(3)
91
(4)
93
(6)
95
(8)
96
(9)
98
(11)
99
(12)