6L 2s

From Xenharmonic Wiki
Revision as of 15:19, 23 May 2015 by Wikispaces>JosephRuhf (**Imported revision 551971458 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2015-05-23 15:19:02 UTC.
The original revision id was 551971458.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

There is only one significant (though small) harmonic entropy minimum with this MOS pattern: [[Porcupine family#Hedgehog|hedgehog]], in which two generators are 6/5 and three are 4/3, same as porcupine.

In addition to the true MOS, LLLsLLLs, there is also a near-MOS, LLLLsLLs, in which the period is the only interval with more than two flavors. The true MOS is always proper, because there is only one small step per period, but the near-MOS is only proper if the generator is smaller than 2\14 (which includes hedgehog).
||||||~ Generator ||~   ||~   ||~   ||~ Cents ||~ Comments ||
|| 1\8 ||   ||   ||   ||   ||   || 150 ||=   ||
||   ||   || 3\22 ||   ||   ||   || 163.64 ||= Hedgehog is around here ||
||   ||   ||   ||   || 8\58 ||   || 165.52 ||=   ||
||   ||   ||   ||   ||   || 13\94 || 165.96 ||= Golden hedgehog/echidna ||
||   ||   ||   || 5\36 ||   ||   || 166.67 ||=   ||
||   || 2\14 ||   ||   ||   ||   || 171.43 ||= Boundary of propriety for near-MOS
Optimum rank range (L/s=2/1) for MOS ||
||   ||   ||   ||   ||   ||   || 178.154 ||= <span style="display: block; text-align: center;">L/s = e</span> ||
||   ||   || 3\20 ||   ||   ||   || 180 ||= L/s = 3 ||
||   ||   ||   ||   ||   ||   || 180.815 || <span style="display: block; text-align: center;">L/s = pi</span> ||
||   ||   ||   || 4/26 ||   ||   || 184.615 ||= L/s = 4 ||
|| 1\6 ||   ||   ||   ||   ||   || 200 ||=   ||

Original HTML content:

<html><head><title>6L 2s</title></head><body>There is only one significant (though small) harmonic entropy minimum with this MOS pattern: <a class="wiki_link" href="/Porcupine%20family#Hedgehog">hedgehog</a>, in which two generators are 6/5 and three are 4/3, same as porcupine.<br />
<br />
In addition to the true MOS, LLLsLLLs, there is also a near-MOS, LLLLsLLs, in which the period is the only interval with more than two flavors. The true MOS is always proper, because there is only one small step per period, but the near-MOS is only proper if the generator is smaller than 2\14 (which includes hedgehog).<br />


<table class="wiki_table">
    <tr>
        <th colspan="3">Generator<br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th><br />
</th>
        <th>Cents<br />
</th>
        <th>Comments<br />
</th>
    </tr>
    <tr>
        <td>1\8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>150<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\22<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>163.64<br />
</td>
        <td style="text-align: center;">Hedgehog is around here<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>8\58<br />
</td>
        <td><br />
</td>
        <td>165.52<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>13\94<br />
</td>
        <td>165.96<br />
</td>
        <td style="text-align: center;">Golden hedgehog/echidna<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5\36<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>166.67<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td>2\14<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>171.43<br />
</td>
        <td style="text-align: center;">Boundary of propriety for near-MOS<br />
Optimum rank range (L/s=2/1) for MOS<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>178.154<br />
</td>
        <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = e</span><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td>3\20<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>180<br />
</td>
        <td style="text-align: center;">L/s = 3<br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>180.815<br />
</td>
        <td><span style="display: block; text-align: center;">L/s = pi</span><br />
</td>
    </tr>
    <tr>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4/26<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>184.615<br />
</td>
        <td style="text-align: center;">L/s = 4<br />
</td>
    </tr>
    <tr>
        <td>1\6<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>200<br />
</td>
        <td style="text-align: center;"><br />
</td>
    </tr>
</table>

</body></html>