User:Moremajorthanmajor/3L 1s (perfect fifth-equivalent)

Lua error in Module:MOS at line 46: attempt to index local 'equave' (a nil value).3L 1s<3/2>, is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating 3L 1s. The name of the period interval is called the sesquitave (by analogy to the tritave).


The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents).


In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. P

Basic Angel is in 7edf, which is a very good fifth-based equal tuning similar to 12edo.

Notation

− There are 3 main ways to notate the diatonic scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate diatonic scales as repeating at the double or triple sesquitave (major ninth or thirteenth), however it does make navigating the genchain harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s] or a major thirteenth which is the Dorian mode of Bijou[9L 3s]. Since there are exactly 8 naturals in double sesquitave notation and 12 in triple sesquitave notation, letters A-H (FGABHCDEF) or dozenal digits (0123456789XE0 or D1234567FGACD with flats written C molle) may be used.

Cents
Notation Supersoft Soft Semisoft Basic Semihard Hard Superhard
Diatonic Napoli Bijou ~15edf ~11edf ~18edf ~7edf ~17edf ~10edf ~13edf
Do#, Sol# F# 0#, D# 1\15

46.153…

1\11

63.157…

2\18

77.419…

1\7

100

3\17

124.137…

2\10

141.176…

3\13

163.63

Reb, Lab Gb 1b, 1c 3\15

138.461…

2\11

126.315…

3\18

116.129…

2\17

82.758…

1\10

70.588…

1\13

54.54

Re, La G 1 4\15

184.615…

3\11

189.473…

5\18

193.548…

2\7

200

5\17

206.896…

3\10

211.764…

4\13

218.18

Re#, La# G# 1# 5\15

230.769…

4\11

252.631…

7\18

270.967…

3\7

300

8\17

331.034…

5\10

352.941…

7\13

381.81

Mib, Sib Ab 2b, 2c 7\15

323.076…

5\11

315.789…

8\18

309.677…

7\17

289.655…

4\10

282.352…

5\13

272.72

Mi, Si A 2 8\15

369.230…

6\11

378.947…

10\18

387.096…

4\7

400

10\17

413.793…

6\10

423.529…

8\13

436.36

Mi#, Si# A# 2# 9\15

415.384…

7\11

442.105…

12\18

464.516…

5\7

500

13\17

537.931…

8\10

564.705…

11\13

600

Fab, Dob Bbb 3bb, 3cc 10\15

461.538…

11\18

425.806…

4\7

400

9\17

372.413…

5\10

352.941…

6\13

327.27

Fa, Do Bb 3b, 3c 11\15

507.692…

8\11

505.263…

13\18

503.225…

5\7

500

12\17

496.551…

7\10

494.117…

9\13

490.90

Fa#, Do# B 3 12\15

553.846…

9\11

568.421…

15\18

580.645…

6\7

600

15\17

620.689…

9\10

635.294…

12\13

654.54

Fax, Dox B# 3# 13\15

600

10\11

631.578…

17\18

658.064…

7\7

700

18\17

744.827…

11\10

776.470…

15\13

818.18

Dob, Solb

Hb

4b, 4c

14\15

− 646.153…

16\18

− 619.354…

6\7

− 600

14\17

− 579.310…

8\10

− 564.705…

10\13

545.45

Do, Sol H 4 15\15

692.307…

11\11

694.736…

18\18

696.774…

7\7

700

17\17

703.448…

10\10

705.882…

13\13

709.09

Do#, Sol# Η# 4# 16\15

738.461…

12\11

757.894…

20\18

774.193…

8\8

800

20\17

827.586…

12\10

847.058…

16\13

872.72

Reb, Lab Cb 5b, 5c 18\15

830.769…

13\11

821.052…

21\18

812.903…

19\17

786.206…

11\10

776.470…

14\13

763.63

Re, La C 5 19\18

876.923…

14\11

884.210…

23\18

890.322…

9\5

900

22\17

910.344…

13\10

917.647…

17\13

927.27

Re#, La# C# 5# 20\15

923.076…

15\11

947.368…

25\18

967.741…

10\7

1000

25\17

1034.482…

15\10

1058.823…

20\13

1090.90

Mib, Sib Db 6b, 6c 22\15

1015.384…

16\11

1010.526…

26\18

1006.451…

24\17

993.103…

14\10

988.235…

18\13

981.81

Mi, Si D 6 23\15

1061.538…

17\11

1073.684…

28\18

1083.870…

11\7

1100

27\17

1117.241…

16\10

1129.411…

21\9

1145.45

Mi#, Si# D# 6# 24\15

1107.692…

18\11

1136.842…

30\18

1161.290…

12\7

1200

30\17

1241.379…

18\10

1270.588…

24\13

1309.09

Fab, Dob Ebb 7bb, 7cc 25\15

1153.846…

29\18

1122.580…

11\7

1100

26\17

1075.862…

15\10

1058.823…

19\13

1036.36

Fa, Do Eb 7b, 7c 26\15

1200

19\11

1200

31\18

1200

12\7

1200

29\17

1200

17\10

1200

22\13

1200

Fa#, Do# E 7 27\15

1246.153…

20\11

1263.157…

33\18

1277.419…

13\7

1300

32\17

1324.137…

19\10

1341.176…

25\13

1363.63

Fax, Dox E# 7# 28\15

1292.307…

21\11

1326.315…

35\18

1354.838…

14\7

1400

35\17

1448.275…

21\10

1482.352…

28\13

1527.27

Dob, Solb Fb 8b, Fc 29\15

1338.461…

34\18

1316.129…

13\7

1300

31\17

1282.758…

18\10

1270.588…

23\18

1254.54

Do, Sol F 8, F 30\15

1384.615…

22\11

1389.473…

36\18

1393.548…

14\7

1400

34\17

1406.896…

20\10

1411.764…

26\13

1418.18

Do#, Sol# F# 8#, F# 31\15

1430.769…

23\11

1452.631…

38\18

1470.967…

15\7

1500

37\17

1531.034…

22\10

1552.941…

29\13

1581.81

Reb, Lab Gb 9b, Gc 33\15

1523.076…

24\11

1515.789…

39\18

1509.677…

36\17

1489.655…

21\10

1482.352…

27\13

1472.72

Re, La G 9, G 34\15

1569.230…

25\11

1578.947…

41\18

1587.096…

16\7

1600

39\17

1613.793…

23\10

1623.529…

30\13

1636.36

Re#, La# G# 9#, G# 35\15

1615.384…

26\11

1642.105…

43\18

1664.516…

17\7

1700

42\17

1737.931…

25\10

1764.705…

33\13

1800

Mib, Sib Ab Xb, Ac 37\15

1707.692…

27\11

1705.263…

44\18

1703.225…

41\17

1696.551…

24\10

1694.117…

31\13

1690.90

Mi, Si A X, A 38\15

1753.846…

28\11

1768.421…

46\18

1780.645…

18\7

1800

44\17

1820.689…

26\10

1835.294…

34\13

1854.54

Mi#, Si# A# X#, A# 39\15

1800

29\11

1831.578…

48\18

1858.064…

19\7

1900

47\17

1944.827…

28\10

1976.470…

37\13

2018.18

Fab, Dob Bbb Ebb, Ccc 40\15

1846.153…

47\18

1819.354…

18\7

1800

43\17

1779.310…

25\10

1764.705…

32\13

1745.45

Fa, Do Bb Eb, Cc 41\15

1892.307…

30\11

1894.736…

49\18

1896.774…

19\7

1900

46\17

1903.448…

27\10

1905.882…

35\13

1909.09

Fa#, Do# B E, C 42\15

1938.461…

31\11

1957.894…

51\18

1974.193…

20\7

2000

49\17

2027.586…

29\10

1976.470…

38\13

2072.72

Fax, Dox B# Ex, Cx 43\15

1984.615…

32\11

2021.052…

53\18

2051.612…

21\7

2100

52\17

2151.724…

31\10

2188.235…

41\13

2236.36

Dob, Solb Hb 0b, Dc 44\15

2030.769…

52\18

2012.903…

20\7

2000

48\17

1986.206…

28\10

1967.470…

36\13

1963.63

Do, Sol H 0, D 45\15

2076.923…

33\11

2084.210…

54\18

2090.322…

21\7

2100

51\17

2110.344…

30\10

2117.647…

39\13

2127.27

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
Relative cents −
Notation

Supersoft

Soft

Semisoft

Basic

Semihard

Hard

Superhard

Diatonic

Napoli

Bijou

~15edf

~11edf

~18edf

~7edf

~17edf

~10edf

~13edf

Do#, Sol#

F#

0#, D#

1\15

46.6

1\11

63.63

2\18

77.7̄

1\7

100

3\17

123.529…

2\10

140

3\13

161.538…

Reb, Lab

Gb

1b, 1c

3\15

140

2\11

127.27

3\18

116.6

2\17

82.352…

1\10

70

1\13

53.846…

Re, La

G

1

4\15

186.6

3\11

190.90

5\18

194.4

2\7

200

5\17

205.882…

3\10

210

4\13

215.384…

Re#, La#

G#

1#

5\15

233.3

4\11

254.54

7\18

272.2̄

3\7

300

8\17

329.411…

5\10

350

7\13

376.923…

Mib, Sib

Ab

2b, 2c

7\15

326.6

5\11

318.18

8\18

311.1

7\17

288.235…

4\10

280

5\13

269.230…

Mi, Si

A

2

8\15

373.3

6\11

381.81

10\18

388.8

4\7

400

10\17

411.764…

6\10

420

8\13

430.769…

Mi#, Si#

A#

2#

9\15

420

7\11

445.45

12\18

466.6

5\7

500

13\17

535.294…

8\10

560

11\13

592.307…

Fab, Dob

Bbb

3bb, 3cc

10\15

466.6

11\18

427.7

4\7

400

9\17

370.588…

5\10

350

6\13

323.076.…

Fa, Do

Bb

3b, 3c

11\15

513.3

8\11

509.09

13\18

505.5

5\7

500

12\17

494.117…

7\10

490

9\13

484.615…

Fa#, Do#

B

3

12\15

560

9\11

572.72

15\18

583.3

6\7

600

15\17

617.647…

9\10

630

12\13

646.153…

Fax, Dox

B#

3#

13\15

606. 6

10\11

636.36

17\18

661.1

7\7

700

18\17

741.176…

11\10

770

15\13

807.692…

Dob, Solb

Hb

4b, 4c

14\15

653.3

16\18

622.2

6\7

600

14\17

576.470…

8\10

560

10\13

538.461…

Do, Sol

H

4

700

Do#, Sol#

Η#

4#

16\15

746.6

12\11

763.63

20\18

777.7

8\7

800

20\17

823.529…

12\10

840

16\13

861.538…

Reb, Lab

Cb

5b, 5c

18\15

840

13\11

827.27

21\18

816.6

19\17

782.352…

11\10

770

14\13

753.846…

Re, La

C

5

19\15

886.6

14\11

890.90

23\18

894.4

9\7

900

22\17

905.882…

13\10

910

17\13

915.384…

Re#, La#

C#

5#

20\15

933.3

15\11

954.54

25\18

972.2

10\7

1000

25\17

1029.411…

15\10

1050

20\13

1076.923…

Mib, Sib

Db

6b, 6c

22\15

1026.6

16\11

1018.18

26\18

1011. 1

24\17

988.235…

14\10

980

18\13

969.230…

Mi, Si

D

6

23\15

1073.3

17\11

1081.81

28\18

1088.8

11\7

1100

27\17

1111.764…

16\10

1120

21\13

1130.769…

Mi#, Si#

D#

6#

24\15

1120

18\11

1145.45

30\18

1166.6

12\7

1200

30\17

1235.294…

18\10

1260

24\13

1292.307…

Fab, Dob

Ebb

7bb, 7cc

25\15

1166.6

29\18

1127.7

11\7

1100

26\17

1070.588…

15\10

1050

19\13

1023.076…

Fa, Do

Eb

7b, 7c

26\15

1213.3

19\11

1209.09

31\18

1205.5

12\7

1200

29\17

1194.117…

17\10

1190

22\13

1184.615…

Fa#, Do#

E

7

27\15

1260

20\11

1272.72

33\18

1283.3

13\7

1300

32\17

1317.647…

19\10

1330

25\13

1346.153…

Fax, Dox

E#

7#

28\15

1306.6

21\11

1336.36

35\18

1361.1

14\7

1400

35\17

1441.176…

21\10

1470

28\13

1507.692…

Dob, Solb

Fb

8b, Fc

29\15

1333.3

34\18

1322.2

13\7

1300

31\17

1276.470…

18\10

1260

23\13

1238.461…

Do, Sol

F

8, F

1400

Do#, Sol#

F#

8#, F#

31\15

1446.6

23\11

1463.63

38\18

1477.7̄

15\7

1500

37\17

1523.529…

22\10

1540

29\13

1561.538…

Reb, Lab

Gb

9b, Gc

33\15

1540

24\11

1527.27

39\18

1516.6

36\17

1482.352…

21\10

1470

27\13

1453.846…

Re, La

G

9, G

34\15

1586.6

25\11

1590.90

41\18

1594.4

16\7

1600

39\17

1605.882…

23\10

1610

30\13

1615.384…

Re#, La#

G#

9#, G#

35\15

1633.3

26\11

1654.54

43\18

1672.2

17\7

1700

42\17

1729.411…

25\10

1750

33\13

1776.923…

Mib, Sib

Ab

Xb, Ac

37\15

1726.6

27\11

1718.18

44\18

1711.1

41\17

1688.235…

24\10

1680

31\13

1669.230…

Mi, Si

A

X, A

38\15

1773.3

28\11

1781.81

46\18

1788.8

18\7

1800

44\17

1811.764…

26\10

1820

34\13

1830.769…

Mi#, Si#

A#

X#, A#

39\15

1820

29\11

1845.45

48\18

1866.6

19\7

1900

47\17

1935.294…

28\10

1960

37\13

1992.307…

Fab, Dob

Bbb

Ebb, Ccc

40\15

1866.6

47\18

1827.7

18\7

1800

43\17

1770.588…

25\10

1750

32\13

1723.076…

Fa, Do

Bb

Eb, Cc

41\15

1913.3

30\11

1909.09

49\18

1905.5

19\7

1900

46\17

1894.117…

27\10

1890

35\13

1884.615…

Fa#, Do#

B

E, C

42\15

1960

31\11

1972.72

51\18

1983.3

20\7

2000

49\17

2017.647…

29\10

2030

38\13

2046.153…

Fax, Dox

B#

Ex, Cx

43\15

2006.6

32\11

2036.36

53\18

2061. 1

21\7

2100

52\17

2141.176…

31\10

2170

41\13

2207.692…

Dob, Solb

Hb

0b, Dc

44\15

2053.3

52\18

2022.2

20\7

2000

48\17

1976.470…

28\10

1960

36\13

− 1938.615…

Do, Sol

H

0, D

2100


Intervals

− − − − − − − − − −
Generators

Sesquitave notation

Interval category name

Generators

Notation of 3/2 inverse

Interval category name

The 4-note MOS has the following intervals (from some root):

0

Do, Sol

perfect unison

0

Do, Sol

sesquitave (just fifth)

1

Fa, Do

perfect fourth

-1

Re, La

perfect second

2

Mib, Sib

minor third

-2

Mi, Si

major third

3

Reb, Lab

diminished second

-3

Fa#, Do#

augmented fourth

The chromatic 7-note MOS also has the following intervals (from some root):

4

Dob, Solb

diminished sesquitave

-4

Do#, Sol#

augmented unison (chroma)

5

Fab, Dob

diminished fourth

-5

Re#, La#

augmented second

6

Mibb, Sibb

diminished third

-6

Mi#, Si#

augmented third

Genchain

− The generator chain for this scale is as follows:

− −
Mibb

− Sibb

Fab

− Dob

Dob

− Solb

Reb

− Lab

Mib

− Sib

Fa

− Do

Do

− Sol

Re

− La

Mi

− Si

Fa#

− Do#

Do#

− Sol#

Re#

− La#

Mi#

− Si#

d3

d4

d6

d2

m3

P4

P1

P2

M3

A4

A1

A2

A3

Modes

− The mode names are based on the species of fifth:

− − − − − −
Mode

Scale

UDP

Interval type

name

pattern

notation

2nd

3rd

4th

Lydian

LLLs

3|0

P

M

A

Major

LLsL

2|1

P

M

P

Minor

LLsL

1|2

P

m

P

Phrygian

sLLL

0|3

d

m

P

Temperaments

− The most basic rank-2 temperament interpretation of diatonic is Napoli. The name "Napoli" comes from the “Neapolitan” sixth triad spelled root-(p-2g)-(2p-3g) (p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations.

Napoli-Meantone

Subgroup: 3/2.6/5.8/5


Comma list: 81/80


POL2 generator: ~9/8 = 192.6406


Mapping: [1 1 2], 0 -2 -3]]


Vals: Template:Val list

Napoli-Superpyth

Subgroup: 3/2.7/6.14/9


Comma list: 64/63


POL2 generator: ~8/7 = 218.6371


Mapping: [1 1 2], 0 -2 -3]]


Vals: Template:Val list

Scale tree

− The spectrum looks like this:

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
Generator

− (bright)

Cents

L

s

L/s

Comments

Normalised

ed7\12

1\4

171.428…

175

1

1

1.000

Equalised

6\23

180

182.608…

6

5

1.200

11\42

180.821…

183.3

11

9

1.222

5\19

181.81

184.210…

5

4

1.250

14\53

182.608…

184.905…

14

11

1.273

9\34

183.050…

185.294…

9

7

1.286

4\15

184.615…

186.6

4

3

1.333

11\41

185.915…

187.804…

11

8

1.375

7\26

186.6

188.461…

7

5

1.400

10\37

187.5

189.189

10

7

1.429

13\48

187.951…

189.583

13

9

1.444

16\59

188.235…

189.830…

16

11

1.4545

3\11

189.473…

190.90

3

2

1.500

Napoli-Meantone starts here

17\62

190.654…

191.935…

17

11

1.5455

14\51

190.90

192.156…

14

9

1.556

11\40

191.304…

192.5

11

7

1.571

8\29

192

193.103…

8

5

1.600

5\18

193.548…

194.4

5

3

1.667

12\43

194.594

195.348…

12

7

1.714

7\25

195.348…

196

7

4

1.750

9\32

196.36

196.875

9

5

1.800

11\39

197.014…

197.435…

11

6

1.833

13\46

197.468…

197.826…

13

7

1.857

15\53

197.802…

198.113…

15

8

1.875

17\60

198.058…

198.3

17

9

1.889

19\67

198.260…

198.507…

19

10

1.900

21\74

198.425…

648}”

21

11

1.909

23\81

198.561…

198.765…

23

12

1.917

25\88

198.675…

198.863

25

13

1.923

27\95

198.773…

198.947…

27

14

1.929

29\102

198.857…

199.019…

29

15

1.933

31\109

198.930…

199.082…

31

16

1.9375

33\116

198.994…

199.137…

33

17

1.941

35\123

199.052…

199.186…

35

18

1.944

2\7

200

200

2

1

2.000

Napoli-Meantone ends, Napoli-Pythagorean begins

19\66

201.769…

201.51

19

9

2.111

17\59

201.980…

201.694…

17

8

2.125

15\52

202.247…

201.923…

15

7

2.143

13\45

202.597…

202.2

13

6

2.167

11\38

203.076…

202.631…

11

5

2.200

9\31

203.773…

203.225…

9

4

2.250

7\24

204.878…

204.16

7

3

2.333

12\41

205.714…

204.878…

12

5

2.400

5\17

206.896…

205.882…

5

2

2.500

Napoli-Neogothic heartland is from here…

18\61

207.692…

206.557…

18

7

2.571

13\44

208

206.8̄1̄

13

5

2.600

8\27

208.695…

207.4̄0̄7̄

8

3

2.667

…to here

11\37

209.523…

208.1̄0̄8̄

11

4

2.750

14\47

210

208.510…

14

5

2.800

17\57

210.309…

208.771…

17

6

2.833

20\67

210.526…

208.955…

20

7

2.857

23\77

210.687…

209.09

23

8

2.875

3\10

211.764…

210

3

1

3.000

Napoli-Pythagorean ends, Napoli-Superpyth begins

22\73

212.903…

210.958…

22

7

3.143

19\63

213.084…

211.1

19

6

3.167

16\53

213.3

211.320…

16

5

3.200

13\43

213.698…

211.627…

13

4

3.250

10\33

214.285…

212.12

10

3

3.333

7\23

215.384…

213.043…

7

2

3.500

11\36

216.393…

213.3

11

3

3.667

15\49

216.867…

214.285…

15

4

3.750

4\13

218.18

215.385…

4

1

4.000

13\42

219.718…

216.6

13

3

4.333

9\29

220.408…

217.241…

9

2

4.500

14\45

221.052…

217.7

14

3

4.667

5\16

222.2

218.75

5

1

5.000

Napoli-Superpyth ends

16\51

223.255…

219.607…

16

3

5.333

11\35

223.728…

220

11

2

5.500

17\54

224.175…

220.370

17

3

5.667

6\19

225

221.052…

6

1

6.000

1\3

240

233.3

1

0

→ inf

Paucitonic