52edt

From Xenharmonic Wiki
Revision as of 11:50, 20 October 2016 by Wikispaces>JosephRuhf (**Imported revision 596254978 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author JosephRuhf and made on 2016-10-20 11:50:16 UTC.
The original revision id was 596254978.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

The 52 equal division of 3, the tritave, divides it into 52 equal parts of 36.576 cents each, corresponding to 32.808 edo. It is something of a curiosity as it really needs to be considered as a 29-limit no-twos system. While not super-accurate, it gets the entire no-twos 29-limit to within 18 cents. It is distinctly flat, in the sense that 5, 7, 11, 13, 17, 19, 23 and 29 are all flat, so using something other than pure-threes tuning might be advisable. It is contorted in the 11-limit, so that it tempers out the same commas as [[26edt]] in the 11-limit and [[13edt]] in the 7-limit. Other commas it tempers out includes 121/119, 209/207, 247/245, 275/273, 299/297, 325/323, 345/343, 363/361, 377/375, 437/435, 495/493, 627/625, 665/663, 667/665, 847/845, 1127/1125, 1311/1309 and 1617/1615. It is the eleventh [[The Riemann Zeta Function and Tuning#Removing%20primes|no-twos zeta peak edt]].

==Intervals== 
||~ Steps ||~ Cents ||~ BP nonatonic degree ||~ Diatonic degree ||~ Corresponding JI intervals ||~ Comments ||~ Generator for... ||
|| 1 || 36.6 || Qa1/3d2 || Sa1 || 50/49~33/32~49/48 ||   ||   ||
|| 2 || 73.15 || Sa1/sd2 || A1/dd2 || 25/24~28/27~22/21~27/26~24/23~21/20~29/28 ||   ||   ||
|| 3 || 109.7 || 3A1/qd2 || A+1/d-2 || 15/14~16/15~29/27~121/112 ||   ||   ||
|| 4 || 146.3 || A1/m2 || AA1/sm2 || 27/25~25/23~49/45~13/12~14/13~11/10~169/162 ||   ||   ||
|| 5 || 182.9 || Sm2 || sm+2 || 10/9 ||   ||   ||
|| 6 || 219.5 || N2 || m2 || 9/8~8/7~44/39 ||   ||   ||
|| 7 || 256.0 || sM2 || N2 || 147/128~7/6 ||   ||   ||
|| 8 || 292.6 || M2/d3 || M2 || 32/27~25/21~13/11~27/23 ||   ||   ||
|| 9 || 329.2 || Qa2/3d3 || SM-2/d-2 || 6/5 || 11/9- ||   ||
|| 10 || 365.8 || Sa2/sd3 || SM2/dd3 || 5/4~16/13 || 11/9+ ||   ||
|| 11 || 402.3 || 3A3/qd3 || SM+2 || 81/64~63/50~33/26~23/18 ||   ||   ||
|| 12 || 438.9 || A2/P3/d4 || AA2/sm3 || 32/25~9/7~14/11~104/81~13/10 ||   ||   ||
|| 13 || 475.5 || Qa3/3d4 || sm+3 || 21/16~98/75 ||   ||   ||
|| 14 || 512.1 || Sa3/sd4 || m3 || 4/3~27/20~162/121 ||   ||   ||
|| 15 || 548.6 || 3A3/qd4 || N3 || 11/8~243/169 || 18/13- ||   ||
|| 16 || 585.2 || A3/m4/d5 || M3 || 7/5~25/18~112/81~88/63~32/23~29/21 || 18/13+ ||   ||
|| 17 || 621.8 || Sm4/3d5 || SM-3 || 10/7~36/25~81/56~63/44~23/16~42/29 || 13/9- ||   ||
|| 18 || 658.4 || N4/sd5 || SM3/dd4 || 16/11~338/243 || 13/9+ ||   ||
|| 19 || 694.95 || sM4/qd5 || SM+3/d-4 || 3/2~40/27~121/81 ||   ||   ||
|| 20 || 731.5 || M4/m5 || AA3/d4 || 32/21~75/49 ||   ||   ||
|| 21 || 768.1 || Qa4/Sm5 || d+4 || 25/16~14/9~11/7~81/52 ||   ||   ||
|| 22 || 804.7 || Sa4/N5 || P4 || 8/5~36/23 ||   ||   ||
|| 23 || 841.25 || 3A4/sM5 || A-4 || 13/8 ||   ||   ||
|| 24 || 877.8 || A4/M5/d6 || A4 || 5/3 ||   ||   ||
|| 25 || 914.4 || Qa5/3d6 || A+4 || 27/16~42/25~22/13~46/27 ||   ||   ||
|| 26 || 951.0 || Sa5/sd6 || AA4/dd5 || 125/72 ||   ||   ||
|| 27 || 987.55 || 3A5/qd6 || d-5 || 16/9~8/7~39/22~75/46 ||   ||   ||
|| 28 || 1024.1 || A5/m6/d7 || d5 || 9/5 ||   ||   ||
|| 29 || 1060.7 || Sm6/3d7 || d+5 || 50/27~46/25~90/49~24/13~13/7~20/11 ||   ||   ||
|| 30 || 1097.3 || N6/sd7 || P5 || 15/8 ||   ||   ||
|| 31 || 1133.9 || sM6/qd7 || A-5 || 48/25~27/14~21/11~52/27~23/12~40/21~56/29 ||   ||   ||
|| 32 || 1170.4 || M6/m7 || A5/dd6 || 49/25~64/33~96/49 ||   ||   ||
|| 33 || 1207.0 || Qa6/Sm7 || A+5 || 2/1 ||   ||   ||
|| 34 || 1243.6 || Sa6/N7 || AA5/sm6 || 33/16~100/49~49/24~729/338 ||   ||   ||
|| 35 || 1280.2 || 3A6/sM7 || sm+6 || 25/12~56/27~44/21~27/13 ||   ||   ||
|| 36 || 1316.7 || A6/M7/d8 || m6 || 15/7~32/15~58/27 ||   ||   ||
|| 37 || 1353.3 || Qa7/3d8 || N6 || 54/25~50/23~98/45~13/6~169/81 ||   ||   ||
|| 38 || 1389.9 || Sa7/sd8 || M6 || 20/9 ||   ||   ||
|| 39 || 1426.5 || 3A7/qd8 || SM-6 || 9/4~16/7 ||   ||   ||
|| 40 || 1463.0 || A7/P8/d9 || SM6/dd7 || 147/64~7/3 ||   ||   ||
|| 41 || 1499.6 || Qa8/3d9 || SM+6/sm-7 || 64/27~50/21~26/11~81/23 ||   ||   ||
|| 42 || 1536.2 || Sa8/sd9 || AA6/sm7 || 12/5 || 22/9- ||   ||
|| 43 || 1572.7 || 3A8/qd9 || sm-7 || 5/2~32/13 || 22/9+ ||   ||
|| 44 || 1609.3 || A8/m9 || m7 || 81/32~63/25~33/13~23/9 ||   ||   ||
|| 45 || 1645.9 || Sm9 || N7 || 64/45~18/7~28/11~208/81~13/5 ||   ||   ||
|| 46 || 1682.5 || N9 || M7 || 21/8~196/75 ||   ||   ||
|| 47 || 1719.1 || sM9 || SM-7 || 8/3~27/10 ||   ||   ||
|| 48 || 1755.65 || M9/d10 || SM7/dd8 || 69/25~135/49 || 36/13- ||   ||
|| 49 || 1792.2 || Qa9/3d10 || SM+7/d-8 || 14/5~25/9~224/81~176/63~64/23~58/21 || 36/13+ ||   ||
|| 50 || 1828.8 || Sa9/sd10 || A7/d8 || 20/7~72/25~81/28~63/22~23/8~84/29 || 26/9- ||   ||
|| 51 || 1865.4 || 3A9/qd10 || P-8 || 147/50~32/11~338/81~144/49 || 26/9+ ||   ||
|| 52 || 1902.0 || A9/P10 || P8 || 3/1 || Tritave ||   ||

It is a weird coincidence how 52edt intones any [[52edo]] intervals within plus or minus 6.5 cents when it is supposed to have nothing to do with this other tuning:

||~ 52edt ||~ 52edo ||~ Discrepancy ||
|| 365.761 || 369.231 || -3.47 ||
|| 512.065 || 507.692 || +4.373 ||
|| 877.825 || 876.923 || +0.902 ||
|| 1243.586 || 1246.154 || -2.168 ||
|| 1389.89 || 1384.615 || +5.275 ||
|| 1755.651 || 1753.846 || +1.805 ||
|| 2121.411 || 2123.077 || -1.666 ||
|| 2633.476 || 2630.769 || +2.647 ||
…and so on

Original HTML content:

<html><head><title>52edt</title></head><body>The 52 equal division of 3, the tritave, divides it into 52 equal parts of 36.576 cents each, corresponding to 32.808 edo. It is something of a curiosity as it really needs to be considered as a 29-limit no-twos system. While not super-accurate, it gets the entire no-twos 29-limit to within 18 cents. It is distinctly flat, in the sense that 5, 7, 11, 13, 17, 19, 23 and 29 are all flat, so using something other than pure-threes tuning might be advisable. It is contorted in the 11-limit, so that it tempers out the same commas as <a class="wiki_link" href="/26edt">26edt</a> in the 11-limit and <a class="wiki_link" href="/13edt">13edt</a> in the 7-limit. Other commas it tempers out includes 121/119, 209/207, 247/245, 275/273, 299/297, 325/323, 345/343, 363/361, 377/375, 437/435, 495/493, 627/625, 665/663, 667/665, 847/845, 1127/1125, 1311/1309 and 1617/1615. It is the eleventh <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing%20primes">no-twos zeta peak edt</a>.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h2&gt; --><h2 id="toc0"><a name="x-Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h2>
 

<table class="wiki_table">
    <tr>
        <th>Steps<br />
</th>
        <th>Cents<br />
</th>
        <th>BP nonatonic degree<br />
</th>
        <th>Diatonic degree<br />
</th>
        <th>Corresponding JI intervals<br />
</th>
        <th>Comments<br />
</th>
        <th>Generator for...<br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>36.6<br />
</td>
        <td>Qa1/3d2<br />
</td>
        <td>Sa1<br />
</td>
        <td>50/49~33/32~49/48<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>73.15<br />
</td>
        <td>Sa1/sd2<br />
</td>
        <td>A1/dd2<br />
</td>
        <td>25/24~28/27~22/21~27/26~24/23~21/20~29/28<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>109.7<br />
</td>
        <td>3A1/qd2<br />
</td>
        <td>A+1/d-2<br />
</td>
        <td>15/14~16/15~29/27~121/112<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>146.3<br />
</td>
        <td>A1/m2<br />
</td>
        <td>AA1/sm2<br />
</td>
        <td>27/25~25/23~49/45~13/12~14/13~11/10~169/162<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>182.9<br />
</td>
        <td>Sm2<br />
</td>
        <td>sm+2<br />
</td>
        <td>10/9<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>219.5<br />
</td>
        <td>N2<br />
</td>
        <td>m2<br />
</td>
        <td>9/8~8/7~44/39<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>256.0<br />
</td>
        <td>sM2<br />
</td>
        <td>N2<br />
</td>
        <td>147/128~7/6<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>292.6<br />
</td>
        <td>M2/d3<br />
</td>
        <td>M2<br />
</td>
        <td>32/27~25/21~13/11~27/23<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>329.2<br />
</td>
        <td>Qa2/3d3<br />
</td>
        <td>SM-2/d-2<br />
</td>
        <td>6/5<br />
</td>
        <td>11/9-<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>365.8<br />
</td>
        <td>Sa2/sd3<br />
</td>
        <td>SM2/dd3<br />
</td>
        <td>5/4~16/13<br />
</td>
        <td>11/9+<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>402.3<br />
</td>
        <td>3A3/qd3<br />
</td>
        <td>SM+2<br />
</td>
        <td>81/64~63/50~33/26~23/18<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>438.9<br />
</td>
        <td>A2/P3/d4<br />
</td>
        <td>AA2/sm3<br />
</td>
        <td>32/25~9/7~14/11~104/81~13/10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>475.5<br />
</td>
        <td>Qa3/3d4<br />
</td>
        <td>sm+3<br />
</td>
        <td>21/16~98/75<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>512.1<br />
</td>
        <td>Sa3/sd4<br />
</td>
        <td>m3<br />
</td>
        <td>4/3~27/20~162/121<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>548.6<br />
</td>
        <td>3A3/qd4<br />
</td>
        <td>N3<br />
</td>
        <td>11/8~243/169<br />
</td>
        <td>18/13-<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>585.2<br />
</td>
        <td>A3/m4/d5<br />
</td>
        <td>M3<br />
</td>
        <td>7/5~25/18~112/81~88/63~32/23~29/21<br />
</td>
        <td>18/13+<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>621.8<br />
</td>
        <td>Sm4/3d5<br />
</td>
        <td>SM-3<br />
</td>
        <td>10/7~36/25~81/56~63/44~23/16~42/29<br />
</td>
        <td>13/9-<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>658.4<br />
</td>
        <td>N4/sd5<br />
</td>
        <td>SM3/dd4<br />
</td>
        <td>16/11~338/243<br />
</td>
        <td>13/9+<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>694.95<br />
</td>
        <td>sM4/qd5<br />
</td>
        <td>SM+3/d-4<br />
</td>
        <td>3/2~40/27~121/81<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>731.5<br />
</td>
        <td>M4/m5<br />
</td>
        <td>AA3/d4<br />
</td>
        <td>32/21~75/49<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>768.1<br />
</td>
        <td>Qa4/Sm5<br />
</td>
        <td>d+4<br />
</td>
        <td>25/16~14/9~11/7~81/52<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>804.7<br />
</td>
        <td>Sa4/N5<br />
</td>
        <td>P4<br />
</td>
        <td>8/5~36/23<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>841.25<br />
</td>
        <td>3A4/sM5<br />
</td>
        <td>A-4<br />
</td>
        <td>13/8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>877.8<br />
</td>
        <td>A4/M5/d6<br />
</td>
        <td>A4<br />
</td>
        <td>5/3<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>914.4<br />
</td>
        <td>Qa5/3d6<br />
</td>
        <td>A+4<br />
</td>
        <td>27/16~42/25~22/13~46/27<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>951.0<br />
</td>
        <td>Sa5/sd6<br />
</td>
        <td>AA4/dd5<br />
</td>
        <td>125/72<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>987.55<br />
</td>
        <td>3A5/qd6<br />
</td>
        <td>d-5<br />
</td>
        <td>16/9~8/7~39/22~75/46<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>1024.1<br />
</td>
        <td>A5/m6/d7<br />
</td>
        <td>d5<br />
</td>
        <td>9/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>1060.7<br />
</td>
        <td>Sm6/3d7<br />
</td>
        <td>d+5<br />
</td>
        <td>50/27~46/25~90/49~24/13~13/7~20/11<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>1097.3<br />
</td>
        <td>N6/sd7<br />
</td>
        <td>P5<br />
</td>
        <td>15/8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>1133.9<br />
</td>
        <td>sM6/qd7<br />
</td>
        <td>A-5<br />
</td>
        <td>48/25~27/14~21/11~52/27~23/12~40/21~56/29<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>1170.4<br />
</td>
        <td>M6/m7<br />
</td>
        <td>A5/dd6<br />
</td>
        <td>49/25~64/33~96/49<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>1207.0<br />
</td>
        <td>Qa6/Sm7<br />
</td>
        <td>A+5<br />
</td>
        <td>2/1<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>1243.6<br />
</td>
        <td>Sa6/N7<br />
</td>
        <td>AA5/sm6<br />
</td>
        <td>33/16~100/49~49/24~729/338<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>1280.2<br />
</td>
        <td>3A6/sM7<br />
</td>
        <td>sm+6<br />
</td>
        <td>25/12~56/27~44/21~27/13<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>1316.7<br />
</td>
        <td>A6/M7/d8<br />
</td>
        <td>m6<br />
</td>
        <td>15/7~32/15~58/27<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>1353.3<br />
</td>
        <td>Qa7/3d8<br />
</td>
        <td>N6<br />
</td>
        <td>54/25~50/23~98/45~13/6~169/81<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>1389.9<br />
</td>
        <td>Sa7/sd8<br />
</td>
        <td>M6<br />
</td>
        <td>20/9<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>39<br />
</td>
        <td>1426.5<br />
</td>
        <td>3A7/qd8<br />
</td>
        <td>SM-6<br />
</td>
        <td>9/4~16/7<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>40<br />
</td>
        <td>1463.0<br />
</td>
        <td>A7/P8/d9<br />
</td>
        <td>SM6/dd7<br />
</td>
        <td>147/64~7/3<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>41<br />
</td>
        <td>1499.6<br />
</td>
        <td>Qa8/3d9<br />
</td>
        <td>SM+6/sm-7<br />
</td>
        <td>64/27~50/21~26/11~81/23<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>42<br />
</td>
        <td>1536.2<br />
</td>
        <td>Sa8/sd9<br />
</td>
        <td>AA6/sm7<br />
</td>
        <td>12/5<br />
</td>
        <td>22/9-<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>43<br />
</td>
        <td>1572.7<br />
</td>
        <td>3A8/qd9<br />
</td>
        <td>sm-7<br />
</td>
        <td>5/2~32/13<br />
</td>
        <td>22/9+<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>44<br />
</td>
        <td>1609.3<br />
</td>
        <td>A8/m9<br />
</td>
        <td>m7<br />
</td>
        <td>81/32~63/25~33/13~23/9<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>45<br />
</td>
        <td>1645.9<br />
</td>
        <td>Sm9<br />
</td>
        <td>N7<br />
</td>
        <td>64/45~18/7~28/11~208/81~13/5<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>46<br />
</td>
        <td>1682.5<br />
</td>
        <td>N9<br />
</td>
        <td>M7<br />
</td>
        <td>21/8~196/75<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>47<br />
</td>
        <td>1719.1<br />
</td>
        <td>sM9<br />
</td>
        <td>SM-7<br />
</td>
        <td>8/3~27/10<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>48<br />
</td>
        <td>1755.65<br />
</td>
        <td>M9/d10<br />
</td>
        <td>SM7/dd8<br />
</td>
        <td>69/25~135/49<br />
</td>
        <td>36/13-<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>49<br />
</td>
        <td>1792.2<br />
</td>
        <td>Qa9/3d10<br />
</td>
        <td>SM+7/d-8<br />
</td>
        <td>14/5~25/9~224/81~176/63~64/23~58/21<br />
</td>
        <td>36/13+<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>50<br />
</td>
        <td>1828.8<br />
</td>
        <td>Sa9/sd10<br />
</td>
        <td>A7/d8<br />
</td>
        <td>20/7~72/25~81/28~63/22~23/8~84/29<br />
</td>
        <td>26/9-<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>51<br />
</td>
        <td>1865.4<br />
</td>
        <td>3A9/qd10<br />
</td>
        <td>P-8<br />
</td>
        <td>147/50~32/11~338/81~144/49<br />
</td>
        <td>26/9+<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>52<br />
</td>
        <td>1902.0<br />
</td>
        <td>A9/P10<br />
</td>
        <td>P8<br />
</td>
        <td>3/1<br />
</td>
        <td>Tritave<br />
</td>
        <td><br />
</td>
    </tr>
</table>

<br />
It is a weird coincidence how 52edt intones any <a class="wiki_link" href="/52edo">52edo</a> intervals within plus or minus 6.5 cents when it is supposed to have nothing to do with this other tuning:<br />
<br />


<table class="wiki_table">
    <tr>
        <th>52edt<br />
</th>
        <th>52edo<br />
</th>
        <th>Discrepancy<br />
</th>
    </tr>
    <tr>
        <td>365.761<br />
</td>
        <td>369.231<br />
</td>
        <td>-3.47<br />
</td>
    </tr>
    <tr>
        <td>512.065<br />
</td>
        <td>507.692<br />
</td>
        <td>+4.373<br />
</td>
    </tr>
    <tr>
        <td>877.825<br />
</td>
        <td>876.923<br />
</td>
        <td>+0.902<br />
</td>
    </tr>
    <tr>
        <td>1243.586<br />
</td>
        <td>1246.154<br />
</td>
        <td>-2.168<br />
</td>
    </tr>
    <tr>
        <td>1389.89<br />
</td>
        <td>1384.615<br />
</td>
        <td>+5.275<br />
</td>
    </tr>
    <tr>
        <td>1755.651<br />
</td>
        <td>1753.846<br />
</td>
        <td>+1.805<br />
</td>
    </tr>
    <tr>
        <td>2121.411<br />
</td>
        <td>2123.077<br />
</td>
        <td>-1.666<br />
</td>
    </tr>
    <tr>
        <td>2633.476<br />
</td>
        <td>2630.769<br />
</td>
        <td>+2.647<br />
</td>
    </tr>
</table>

…and so on</body></html>