39edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Osmiorisbendi and made on 2010-05-24 22:10:23 UTC.
- The original revision id was 144410053.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
<span style="color: #6100f5; font-size: 200%;">39 tone equal temperament</span> **39-EDO Intervals:** || **NOMENCLATURE** || || **|** = Semisharp **t** = Semiflat || || **DEGREE** || **NOTE** || **CENTS** || **Nearest JI** || **Cents** || **Error** || || **0** || **1** || **0** || **1/1** || **0** || **None** || || 1 || 1| || 30.7692 || 58/57 || 30.1092 || +0.66 || || 2 || 1# || 61.5385 || 28/27 || 62.9609 || - 1.4224 || || 3 || 2b || 92.3077 || 256/243 || 90.225 || +2.0827 || || 4 || 2t || 123.0769 || 29/27 || 123.7122 || -0.6353 || || 5 || 2 || 153.8462 || 82/75 || 154.48 || -0.6338 || || 6 || 2| || 184.6154 || 10/9 || 182.4037 || +2.2117 || || **7·** || **2#** || **215.3846** || **17/15** || **216.6867** || **-1.3021** || || 8 || 3b || 246.1538 || 15/13 || 247.7411 || -1.5873 || || 9 || 3t || 276.9231 || 27/23 || 277.5907 || -0.6676 || || 10 || 3 || 307.6923 || 49/41 || 308.5894 || -0.8971 || || 11 || 3| || 338.4615 || 45/37 || 338.8797 || -0.4182 || || **12·** || **3#** || **369.2308** || **26/21** || **369.7468** || **-0.516** || || 13 || 4b || 400 || 34/27 || 399.0904 || +0.9096 || || 14 || 4t || 430.7692 || 9/7 || 435.0841 || -4.3149 || || 15 || 4 || 461.5385 || 43/33 || 458.2448 || +3.2937 || || 16 || 4| (5t) || 492.3077 || 93/70 || 491.851 || +0.4567 || || **17·** || **5** || **523.0769** || **23/17** || **523.3189** || **-0.242** || || 18 || 5| || 553.8462 || 11/8 || 551.3179 || +2.5283 || || 19 || 5# || 584.6154 || 7/5 || 582.5122 || +2.1032 || || 20 || 6b || 615.3846 || 10/7 || 617.4878 || -2.1032 || || 21 || 6t || 646.1538 || 16/11 || 648.6821 || -2.5283 || || **22·** || **6** || **676.9231** || **34/23** || **676.6811** || **+0.242** || || 23 || 6| || 707.6923 || 140/93 || 708.149 || -0.4567 || || 24 || 6# || 738.4615 || 66/43 || 741.7552 || -3.2937 || || 25 || 7b || 769.2308 || 14/9 || 764.9159 || +4.3149 || || 26 || 7t || 800 || 27/17 || 800.9096 || -0.9096 || || **27·** || **7 (A)** || **830.7692** || **21/13** || **830.2532** || **+0.516** || || 28 || 7| || 861.5385 || 74/45 || 861.1203 || +0.4182 || || 29 || 7# || 892.3077 || 82/49 || 891.4106 || +0.8971 || || 30 || 8b || 923.0769 || 46/27 || 922.4093 || +0.6676 || || 31 || 8t || 953.8462 || 26/15 || 952.2589 || +1.5873 || || **32·** || **8** || **984.6154** || **30/17** || **983.3133** || **+1.3021** || || 33 || 8| || 1015.3846 || 9/5 || 1017.5963 || -2.2117 || || 34 || 8# || 1046.1538 || 75/41 || 1045.52 || +0.6338 || || 35 || 9b || 1076.9231 || 54/29 || 1076.2878 || +0.6353 || || 36 || 9t || 1107.6923 || 243/128 || 1109.775 || -2.0827 || || 37 || 9 || 1138.4615 || 27/14 || 1137.0391 || +1.4224 || || 38 || 9| (1t) || 1169.2308 || 57/29 || 1169.8908 || -0.66 || || **39··(or 0)** || **1** || **1200** || **2/1** || **1200** || **None** || **39 tone equal modes:** 15 15 9 14 14 11 13 13 13 11 11 11 6 10 10 10 9 9 9 9 9 3 8 8 8 8 7 7 7 7 7 7 4 5 5 7 5 5 5 7 5 5 5 7 5 5 7 5 5 5 7 5 7 5 5 5 5 5 5 5 5 4 5 5 5 2 5 5 5 5 2 5 5 2 5 5 5 5 2 5 5 5 3 5 5 3 5 5 3 5 4 4 5 4 4 5 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 39-EDO is one of the derivations of Armodue Systems. 39 is the fifthtones of Armodue (16-EDO). 39-EDO is the Extended range of Armodue-Hornbostel (23-EDO) and Extended Pelogic. 39-EDO contains very good representation of the some low-limit harmonics, but all the rest are mid-limit harmonics and some high-limit harmonics. 39-EDO may be cataloged Semi-atonal.
Original HTML content:
<html><head><title>39edo</title></head><body><span style="color: #6100f5; font-size: 200%;">39 tone equal temperament</span><br /> <br /> <strong>39-EDO Intervals:</strong><br /> <table class="wiki_table"> <tr> <td><strong>NOMENCLATURE</strong><br /> </td> </tr> <tr> <td><strong>|</strong> = Semisharp<br /> <strong>t</strong> = Semiflat<br /> </td> </tr> </table> <br /> <table class="wiki_table"> <tr> <td><strong>DEGREE</strong><br /> </td> <td><strong>NOTE</strong><br /> </td> <td><strong>CENTS</strong><br /> </td> <td><strong>Nearest JI</strong><br /> </td> <td><strong>Cents</strong><br /> </td> <td><strong>Error</strong><br /> </td> </tr> <tr> <td>0<br /> </td> <td><strong>1</strong><br /> </td> <td>0<br /> </td> <td><strong>1/1</strong><br /> </td> <td>0<br /> </td> <td><strong>None</strong><br /> </td> </tr> <tr> <td>1<br /> </td> <td>1|<br /> </td> <td>30.7692<br /> </td> <td>58/57<br /> </td> <td>30.1092<br /> </td> <td>+0.66<br /> </td> </tr> <tr> <td>2<br /> </td> <td>1#<br /> </td> <td>61.5385<br /> </td> <td>28/27<br /> </td> <td>62.9609<br /> </td> <td>- 1.4224<br /> </td> </tr> <tr> <td>3<br /> </td> <td>2b<br /> </td> <td>92.3077<br /> </td> <td>256/243<br /> </td> <td>90.225<br /> </td> <td>+2.0827<br /> </td> </tr> <tr> <td>4<br /> </td> <td>2t<br /> </td> <td>123.0769<br /> </td> <td>29/27<br /> </td> <td>123.7122<br /> </td> <td>-0.6353<br /> </td> </tr> <tr> <td>5<br /> </td> <td>2<br /> </td> <td>153.8462<br /> </td> <td>82/75<br /> </td> <td>154.48<br /> </td> <td>-0.6338<br /> </td> </tr> <tr> <td>6<br /> </td> <td>2|<br /> </td> <td>184.6154<br /> </td> <td>10/9<br /> </td> <td>182.4037<br /> </td> <td>+2.2117<br /> </td> </tr> <tr> <td><strong>7·</strong><br /> </td> <td><strong>2#</strong><br /> </td> <td><strong>215.3846</strong><br /> </td> <td><strong>17/15</strong><br /> </td> <td><strong>216.6867</strong><br /> </td> <td><strong>-1.3021</strong><br /> </td> </tr> <tr> <td>8<br /> </td> <td>3b<br /> </td> <td>246.1538<br /> </td> <td>15/13<br /> </td> <td>247.7411<br /> </td> <td>-1.5873<br /> </td> </tr> <tr> <td>9<br /> </td> <td>3t<br /> </td> <td>276.9231<br /> </td> <td>27/23<br /> </td> <td>277.5907<br /> </td> <td>-0.6676<br /> </td> </tr> <tr> <td>10<br /> </td> <td>3<br /> </td> <td>307.6923<br /> </td> <td>49/41<br /> </td> <td>308.5894<br /> </td> <td>-0.8971<br /> </td> </tr> <tr> <td>11<br /> </td> <td>3|<br /> </td> <td>338.4615<br /> </td> <td>45/37<br /> </td> <td>338.8797<br /> </td> <td>-0.4182<br /> </td> </tr> <tr> <td><strong>12·</strong><br /> </td> <td><strong>3#</strong><br /> </td> <td><strong>369.2308</strong><br /> </td> <td><strong>26/21</strong><br /> </td> <td><strong>369.7468</strong><br /> </td> <td><strong>-0.516</strong><br /> </td> </tr> <tr> <td>13<br /> </td> <td>4b<br /> </td> <td>400<br /> </td> <td>34/27<br /> </td> <td>399.0904<br /> </td> <td>+0.9096<br /> </td> </tr> <tr> <td>14<br /> </td> <td>4t<br /> </td> <td>430.7692<br /> </td> <td>9/7<br /> </td> <td>435.0841<br /> </td> <td>-4.3149<br /> </td> </tr> <tr> <td>15<br /> </td> <td>4<br /> </td> <td>461.5385<br /> </td> <td>43/33<br /> </td> <td>458.2448<br /> </td> <td>+3.2937<br /> </td> </tr> <tr> <td>16<br /> </td> <td>4| (5t)<br /> </td> <td>492.3077<br /> </td> <td>93/70<br /> </td> <td>491.851<br /> </td> <td>+0.4567<br /> </td> </tr> <tr> <td><strong>17·</strong><br /> </td> <td><strong>5</strong><br /> </td> <td><strong>523.0769</strong><br /> </td> <td><strong>23/17</strong><br /> </td> <td><strong>523.3189</strong><br /> </td> <td><strong>-0.242</strong><br /> </td> </tr> <tr> <td>18<br /> </td> <td>5|<br /> </td> <td>553.8462<br /> </td> <td>11/8<br /> </td> <td>551.3179<br /> </td> <td>+2.5283<br /> </td> </tr> <tr> <td>19<br /> </td> <td>5#<br /> </td> <td>584.6154<br /> </td> <td>7/5<br /> </td> <td>582.5122<br /> </td> <td>+2.1032<br /> </td> </tr> <tr> <td>20<br /> </td> <td>6b<br /> </td> <td>615.3846<br /> </td> <td>10/7<br /> </td> <td>617.4878<br /> </td> <td>-2.1032<br /> </td> </tr> <tr> <td>21<br /> </td> <td>6t<br /> </td> <td>646.1538<br /> </td> <td>16/11<br /> </td> <td>648.6821<br /> </td> <td>-2.5283<br /> </td> </tr> <tr> <td><strong>22·</strong><br /> </td> <td><strong>6</strong><br /> </td> <td><strong>676.9231</strong><br /> </td> <td><strong>34/23</strong><br /> </td> <td><strong>676.6811</strong><br /> </td> <td><strong>+0.242</strong><br /> </td> </tr> <tr> <td>23<br /> </td> <td>6|<br /> </td> <td>707.6923<br /> </td> <td>140/93<br /> </td> <td>708.149<br /> </td> <td>-0.4567<br /> </td> </tr> <tr> <td>24<br /> </td> <td>6#<br /> </td> <td>738.4615<br /> </td> <td>66/43<br /> </td> <td>741.7552<br /> </td> <td>-3.2937<br /> </td> </tr> <tr> <td>25<br /> </td> <td>7b<br /> </td> <td>769.2308<br /> </td> <td>14/9<br /> </td> <td>764.9159<br /> </td> <td>+4.3149<br /> </td> </tr> <tr> <td>26<br /> </td> <td>7t<br /> </td> <td>800<br /> </td> <td>27/17<br /> </td> <td>800.9096<br /> </td> <td>-0.9096<br /> </td> </tr> <tr> <td><strong>27·</strong><br /> </td> <td><strong>7 (A)</strong><br /> </td> <td><strong>830.7692</strong><br /> </td> <td><strong>21/13</strong><br /> </td> <td><strong>830.2532</strong><br /> </td> <td><strong>+0.516</strong><br /> </td> </tr> <tr> <td>28<br /> </td> <td>7|<br /> </td> <td>861.5385<br /> </td> <td>74/45<br /> </td> <td>861.1203<br /> </td> <td>+0.4182<br /> </td> </tr> <tr> <td>29<br /> </td> <td>7#<br /> </td> <td>892.3077<br /> </td> <td>82/49<br /> </td> <td>891.4106<br /> </td> <td>+0.8971<br /> </td> </tr> <tr> <td>30<br /> </td> <td>8b<br /> </td> <td>923.0769<br /> </td> <td>46/27<br /> </td> <td>922.4093<br /> </td> <td>+0.6676<br /> </td> </tr> <tr> <td>31<br /> </td> <td>8t<br /> </td> <td>953.8462<br /> </td> <td>26/15<br /> </td> <td>952.2589<br /> </td> <td>+1.5873<br /> </td> </tr> <tr> <td><strong>32·</strong><br /> </td> <td><strong>8</strong><br /> </td> <td><strong>984.6154</strong><br /> </td> <td><strong>30/17</strong><br /> </td> <td><strong>983.3133</strong><br /> </td> <td><strong>+1.3021</strong><br /> </td> </tr> <tr> <td>33<br /> </td> <td>8|<br /> </td> <td>1015.3846<br /> </td> <td>9/5<br /> </td> <td>1017.5963<br /> </td> <td>-2.2117<br /> </td> </tr> <tr> <td>34<br /> </td> <td>8#<br /> </td> <td>1046.1538<br /> </td> <td>75/41<br /> </td> <td>1045.52<br /> </td> <td>+0.6338<br /> </td> </tr> <tr> <td>35<br /> </td> <td>9b<br /> </td> <td>1076.9231<br /> </td> <td>54/29<br /> </td> <td>1076.2878<br /> </td> <td>+0.6353<br /> </td> </tr> <tr> <td>36<br /> </td> <td>9t<br /> </td> <td>1107.6923<br /> </td> <td>243/128<br /> </td> <td>1109.775<br /> </td> <td>-2.0827<br /> </td> </tr> <tr> <td>37<br /> </td> <td>9<br /> </td> <td>1138.4615<br /> </td> <td>27/14<br /> </td> <td>1137.0391<br /> </td> <td>+1.4224<br /> </td> </tr> <tr> <td>38<br /> </td> <td>9| (1t)<br /> </td> <td>1169.2308<br /> </td> <td>57/29<br /> </td> <td>1169.8908<br /> </td> <td>-0.66<br /> </td> </tr> <tr> <td><strong>39··(or 0)</strong><br /> </td> <td><strong>1</strong><br /> </td> <td><strong>1200</strong><br /> </td> <td><strong>2/1</strong><br /> </td> <td><strong>1200</strong><br /> </td> <td><strong>None</strong><br /> </td> </tr> </table> <br /> <br /> <strong>39 tone equal modes:</strong><br /> <br /> 15 15 9<br /> 14 14 11<br /> 13 13 13<br /> 11 11 11 6<br /> 10 10 10 9<br /> 9 9 9 9 3<br /> 8 8 8 8 7<br /> 7 7 7 7 7 4<br /> 5 5 7 5 5 5 7<br /> 5 5 5 7 5 5 7<br /> 5 5 5 7 5 7 5<br /> 5 5 5 5 5 5 5 4<br /> 5 5 5 2 5 5 5 5 2<br /> 5 5 2 5 5 5 5 2 5<br /> 5 5 3 5 5 3 5 5 3<br /> 5 4 4 5 4 4 5 4 4<br /> 4 4 4 4 4 4 4 4 4 3<br /> 3 3 3 3 3 3 3 3 3 3 3 3 3<br /> 3 3 3 2 3 3 3 3 2 3 3 3 3 2<br /> 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2<br /> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1<br /> 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1<br /> <br /> 39-EDO is one of the derivations of Armodue Systems. 39 is the fifthtones of Armodue (16-EDO). 39-EDO is the Extended range of Armodue-Hornbostel (23-EDO) and Extended Pelogic. 39-EDO contains very good representation of the some low-limit harmonics, but all the rest are mid-limit harmonics and some high-limit harmonics. 39-EDO may be cataloged Semi-atonal.</body></html>