39edo

From Xenharmonic Wiki
Revision as of 23:26, 6 June 2010 by Wikispaces>Osmiorisbendi (**Imported revision 147318167 - Original comment: **)
Jump to navigation Jump to search

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author Osmiorisbendi and made on 2010-06-06 23:26:00 UTC.
The original revision id was 147318167.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

=<span style="color: #007a22; font-size: 118%;">39 tone equal temperament</span>= 
​
If we take 22/39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group interested in 16EDO, Hornbostel Temperament (23EDO) and allied systems. However, its 23/39 fifth, five and three-quarters cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat--in this case, 25 cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO in some ways allied to 12EDO in supporting augene temperament, and is in fact an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find 39et tempers out 99/98 and 121/120 also. This better choice for 39et is <39 62 91 110 135|.



**39-EDO Intervals:**
|| **NOMENCLATURE** ||
|| **|** = Semisharp
**t** = Semiflat ||

|| **DEGREE** || **NOTE** || **CENTS** || **[[Nearest just interval|Nearest JI]]** || **Cents** || **Error** ||
|| **0** || **1** || **0** || **1/1** || **0** || **None** ||
|| 1 || 1| || 30.7692 || 58/57 || 30.1092 || +0.66 ||
|| 2 || 1# || 61.5385 || 28/27 || 62.9609 || - 1.4224 ||
|| 3 || 2b || 92.3077 || 58/55 || 91.9455 || +0.3622 ||
|| 4 || 2t || 123.0769 || 29/27 || 123.7122 || -0.6353 ||
|| 5 || 2 || 153.8462 || 82/75 || 154.48 || -0.6338 ||
|| 6 || 2| || 184.6154 || 10/9 || 182.4037 || +2.2117 ||
|| **7·** || **2#** || **215.3846** || **17/15** || **216.6867** || **-1.3021** ||
|| 8 || 3b || 246.1538 || 15/13 || 247.7411 || -1.5873 ||
|| 9 || 3t || 276.9231 || 27/23 || 277.5907 || -0.6676 ||
|| 10 || 3 || 307.6923 || 49/41 || 308.5894 || -0.8971 ||
|| 11 || 3| || 338.4615 || 62/51 || 338.1252 || +0.3363 ||
|| **12·** || **3#** || **369.2308** || **26/21** || **369.7468** || **-0.516** ||
|| 13 || 4b || 400 || 34/27 || 399.0904 || +0.9096 ||
|| 14 || 4t || 430.7692 || 41/32 || 429.0624 || +1.7068 ||
|| 15 || 4 || 461.5385 || 43/33 || 458.2448 || +3.2937 ||
|| 16 || 4| (5t) || 492.3077 || 85/64 || 491.2691 || +1.0386 ||
|| **17·** || **5** || **523.0769** || **23/17** || **523.3189** || **-0.242** ||
|| 18 || 5| || 553.8462 || 11/8 || 551.3179 || +2.5283 ||
|| 19 || 5# || 584.6154 || 7/5 || 582.5122 || +2.1032 ||
|| 20 || 6b || 615.3846 || 10/7 || 617.4878 || -2.1032 ||
|| 21 || 6t || 646.1538 || 16/11 || 648.6821 || -2.5283 ||
|| **22·** || **6** || **676.9231** || **34/23** || **676.6811** || **+0.242** ||
|| 23 || 6| || 707.6923 || 128/85 || 708.7309 || -1.0386 ||
|| 24 || 6# || 738.4615 || 66/43 || 741.7552 || -3.2937 ||
|| 25 || 7b || 769.2308 || 64/41 || 770.9376 || -1.7068 ||
|| 26 || 7t || 800 || 27/17 || 800.9096 || -0.9096 ||
|| **27·** || **7** || **830.7692** || **21/13** || **830.2532** || **+0.516** ||
|| 28 || 7| || 861.5385 || 51/31 || 861.8748 || -0.3363 ||
|| 29 || 7# (A) || 892.3077 || 82/49 || 891.4106 || +0.8971 ||
|| 30 || 8b || 923.0769 || 46/27 || 922.4093 || +0.6676 ||
|| 31 || 8t || 953.8462 || 26/15 || 952.2589 || +1.5873 ||
|| **32·** || **8** || **984.6154** || **30/17** || **983.3133** || **+1.3021** ||
|| 33 || 8| || 1015.3846 || 9/5 || 1017.5963 || -2.2117 ||
|| 34 || 8# || 1046.1538 || 75/41 || 1045.52 || +0.6338 ||
|| 35 || 9b || 1076.9231 || 54/29 || 1076.2878 || +0.6353 ||
|| 36 || 9t || 1107.6923 || 55/29 || 1108.0545 || -0.3622 ||
|| 37 || 9 || 1138.4615 || 27/14 || 1137.0391 || +1.4224 ||
|| 38 || 9| (1t) || 1169.2308 || 57/29 || 1169.8908 || -0.66 ||
|| **39··(or 0)** || **1** || **1200** || **2/1** || **1200** || **None** ||


**39 tone equal modes:**

15 15 9
14 14 11
13 13 13
11 11 11 6
10 10 10 9
9 9 9 9 3
8 8 8 8 7
7 7 7 7 7 4
5 5 7 5 5 5 7
5 5 5 7 5 5 7
5 5 5 7 5 7 5
5 5 5 5 5 5 5 4
**5 5 5 2 5 5 5 5 2**
5 5 2 5 5 5 5 2 5
5 5 3 5 5 3 5 5 3
5 4 4 5 4 4 5 4 4
4 4 4 4 4 4 4 4 4 3
3 3 3 3 3 3 3 3 3 3 3 3 3
**3 3 3 2 3 3 3 3 2 3 3 3 3 2**
2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1

Original HTML content:

<html><head><title>39edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x39 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #007a22; font-size: 118%;">39 tone equal temperament</span></h1>
 ​<br />
If we take 22/39 as a fifth, can be used in Mavila Temperament, and from that point of view seems to have attracted the attention of the Armodue school, an Italian group interested in 16EDO, Hornbostel Temperament (23EDO) and allied systems. However, its 23/39 fifth, five and three-quarters cents sharp, is in much better tune than the Mavila fifth which like all Mavila fifths is very, very flat--in this case, 25 cents flat. Together with its best third which is the familiar 400 cents of 12 equal, we get a system which tempers out the diesis, 128/125, and the amity comma, 1600000/1594323. We have two choices for a map for 7, but the sharp one works better with the 3 and 5, which adds 64/63 and 126/125 to the list. Tempering out both 128/125 and 64/63 makes 39EDO in some ways allied to 12EDO in supporting augene temperament, and is in fact an excellent choice for an augene tuning, but one difference is that 39 has a fine 11, and adding it to consideration we find 39et tempers out 99/98 and 121/120 also. This better choice for 39et is &lt;39 62 91 110 135|.<br />
<br />
<br />
<br />
<strong>39-EDO Intervals:</strong><br />


<table class="wiki_table">
    <tr>
        <td><strong>NOMENCLATURE</strong><br />
</td>
    </tr>
    <tr>
        <td><strong>|</strong> = Semisharp<br />
<strong>t</strong> = Semiflat<br />
</td>
    </tr>
</table>

<br />


<table class="wiki_table">
    <tr>
        <td><strong>DEGREE</strong><br />
</td>
        <td><strong>NOTE</strong><br />
</td>
        <td><strong>CENTS</strong><br />
</td>
        <td><strong><a class="wiki_link" href="/Nearest%20just%20interval">Nearest JI</a></strong><br />
</td>
        <td><strong>Cents</strong><br />
</td>
        <td><strong>Error</strong><br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td><strong>1</strong><br />
</td>
        <td>0<br />
</td>
        <td><strong>1/1</strong><br />
</td>
        <td>0<br />
</td>
        <td><strong>None</strong><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1|<br />
</td>
        <td>30.7692<br />
</td>
        <td>58/57<br />
</td>
        <td>30.1092<br />
</td>
        <td>+0.66<br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>1#<br />
</td>
        <td>61.5385<br />
</td>
        <td>28/27<br />
</td>
        <td>62.9609<br />
</td>
        <td>- 1.4224<br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>2b<br />
</td>
        <td>92.3077<br />
</td>
        <td>58/55<br />
</td>
        <td>91.9455<br />
</td>
        <td>+0.3622<br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>2t<br />
</td>
        <td>123.0769<br />
</td>
        <td>29/27<br />
</td>
        <td>123.7122<br />
</td>
        <td>-0.6353<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>2<br />
</td>
        <td>153.8462<br />
</td>
        <td>82/75<br />
</td>
        <td>154.48<br />
</td>
        <td>-0.6338<br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>2|<br />
</td>
        <td>184.6154<br />
</td>
        <td>10/9<br />
</td>
        <td>182.4037<br />
</td>
        <td>+2.2117<br />
</td>
    </tr>
    <tr>
        <td><strong>7·</strong><br />
</td>
        <td><strong>2#</strong><br />
</td>
        <td><strong>215.3846</strong><br />
</td>
        <td><strong>17/15</strong><br />
</td>
        <td><strong>216.6867</strong><br />
</td>
        <td><strong>-1.3021</strong><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>3b<br />
</td>
        <td>246.1538<br />
</td>
        <td>15/13<br />
</td>
        <td>247.7411<br />
</td>
        <td>-1.5873<br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>3t<br />
</td>
        <td>276.9231<br />
</td>
        <td>27/23<br />
</td>
        <td>277.5907<br />
</td>
        <td>-0.6676<br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>3<br />
</td>
        <td>307.6923<br />
</td>
        <td>49/41<br />
</td>
        <td>308.5894<br />
</td>
        <td>-0.8971<br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>3|<br />
</td>
        <td>338.4615<br />
</td>
        <td>62/51<br />
</td>
        <td>338.1252<br />
</td>
        <td>+0.3363<br />
</td>
    </tr>
    <tr>
        <td><strong>12·</strong><br />
</td>
        <td><strong>3#</strong><br />
</td>
        <td><strong>369.2308</strong><br />
</td>
        <td><strong>26/21</strong><br />
</td>
        <td><strong>369.7468</strong><br />
</td>
        <td><strong>-0.516</strong><br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>4b<br />
</td>
        <td>400<br />
</td>
        <td>34/27<br />
</td>
        <td>399.0904<br />
</td>
        <td>+0.9096<br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>4t<br />
</td>
        <td>430.7692<br />
</td>
        <td>41/32<br />
</td>
        <td>429.0624<br />
</td>
        <td>+1.7068<br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>4<br />
</td>
        <td>461.5385<br />
</td>
        <td>43/33<br />
</td>
        <td>458.2448<br />
</td>
        <td>+3.2937<br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>4| (5t)<br />
</td>
        <td>492.3077<br />
</td>
        <td>85/64<br />
</td>
        <td>491.2691<br />
</td>
        <td>+1.0386<br />
</td>
    </tr>
    <tr>
        <td><strong>17·</strong><br />
</td>
        <td><strong>5</strong><br />
</td>
        <td><strong>523.0769</strong><br />
</td>
        <td><strong>23/17</strong><br />
</td>
        <td><strong>523.3189</strong><br />
</td>
        <td><strong>-0.242</strong><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>5|<br />
</td>
        <td>553.8462<br />
</td>
        <td>11/8<br />
</td>
        <td>551.3179<br />
</td>
        <td>+2.5283<br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>5#<br />
</td>
        <td>584.6154<br />
</td>
        <td>7/5<br />
</td>
        <td>582.5122<br />
</td>
        <td>+2.1032<br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>6b<br />
</td>
        <td>615.3846<br />
</td>
        <td>10/7<br />
</td>
        <td>617.4878<br />
</td>
        <td>-2.1032<br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>6t<br />
</td>
        <td>646.1538<br />
</td>
        <td>16/11<br />
</td>
        <td>648.6821<br />
</td>
        <td>-2.5283<br />
</td>
    </tr>
    <tr>
        <td><strong>22·</strong><br />
</td>
        <td><strong>6</strong><br />
</td>
        <td><strong>676.9231</strong><br />
</td>
        <td><strong>34/23</strong><br />
</td>
        <td><strong>676.6811</strong><br />
</td>
        <td><strong>+0.242</strong><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>6|<br />
</td>
        <td>707.6923<br />
</td>
        <td>128/85<br />
</td>
        <td>708.7309<br />
</td>
        <td>-1.0386<br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>6#<br />
</td>
        <td>738.4615<br />
</td>
        <td>66/43<br />
</td>
        <td>741.7552<br />
</td>
        <td>-3.2937<br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>7b<br />
</td>
        <td>769.2308<br />
</td>
        <td>64/41<br />
</td>
        <td>770.9376<br />
</td>
        <td>-1.7068<br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>7t<br />
</td>
        <td>800<br />
</td>
        <td>27/17<br />
</td>
        <td>800.9096<br />
</td>
        <td>-0.9096<br />
</td>
    </tr>
    <tr>
        <td><strong>27·</strong><br />
</td>
        <td><strong>7</strong><br />
</td>
        <td><strong>830.7692</strong><br />
</td>
        <td><strong>21/13</strong><br />
</td>
        <td><strong>830.2532</strong><br />
</td>
        <td><strong>+0.516</strong><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>7|<br />
</td>
        <td>861.5385<br />
</td>
        <td>51/31<br />
</td>
        <td>861.8748<br />
</td>
        <td>-0.3363<br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>7# (A)<br />
</td>
        <td>892.3077<br />
</td>
        <td>82/49<br />
</td>
        <td>891.4106<br />
</td>
        <td>+0.8971<br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>8b<br />
</td>
        <td>923.0769<br />
</td>
        <td>46/27<br />
</td>
        <td>922.4093<br />
</td>
        <td>+0.6676<br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>8t<br />
</td>
        <td>953.8462<br />
</td>
        <td>26/15<br />
</td>
        <td>952.2589<br />
</td>
        <td>+1.5873<br />
</td>
    </tr>
    <tr>
        <td><strong>32·</strong><br />
</td>
        <td><strong>8</strong><br />
</td>
        <td><strong>984.6154</strong><br />
</td>
        <td><strong>30/17</strong><br />
</td>
        <td><strong>983.3133</strong><br />
</td>
        <td><strong>+1.3021</strong><br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>8|<br />
</td>
        <td>1015.3846<br />
</td>
        <td>9/5<br />
</td>
        <td>1017.5963<br />
</td>
        <td>-2.2117<br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>8#<br />
</td>
        <td>1046.1538<br />
</td>
        <td>75/41<br />
</td>
        <td>1045.52<br />
</td>
        <td>+0.6338<br />
</td>
    </tr>
    <tr>
        <td>35<br />
</td>
        <td>9b<br />
</td>
        <td>1076.9231<br />
</td>
        <td>54/29<br />
</td>
        <td>1076.2878<br />
</td>
        <td>+0.6353<br />
</td>
    </tr>
    <tr>
        <td>36<br />
</td>
        <td>9t<br />
</td>
        <td>1107.6923<br />
</td>
        <td>55/29<br />
</td>
        <td>1108.0545<br />
</td>
        <td>-0.3622<br />
</td>
    </tr>
    <tr>
        <td>37<br />
</td>
        <td>9<br />
</td>
        <td>1138.4615<br />
</td>
        <td>27/14<br />
</td>
        <td>1137.0391<br />
</td>
        <td>+1.4224<br />
</td>
    </tr>
    <tr>
        <td>38<br />
</td>
        <td>9| (1t)<br />
</td>
        <td>1169.2308<br />
</td>
        <td>57/29<br />
</td>
        <td>1169.8908<br />
</td>
        <td>-0.66<br />
</td>
    </tr>
    <tr>
        <td><strong>39··(or 0)</strong><br />
</td>
        <td><strong>1</strong><br />
</td>
        <td><strong>1200</strong><br />
</td>
        <td><strong>2/1</strong><br />
</td>
        <td><strong>1200</strong><br />
</td>
        <td><strong>None</strong><br />
</td>
    </tr>
</table>

<br />
<br />
<strong>39 tone equal modes:</strong><br />
<br />
15 15 9<br />
14 14 11<br />
13 13 13<br />
11 11 11 6<br />
10 10 10 9<br />
9 9 9 9 3<br />
8 8 8 8 7<br />
7 7 7 7 7 4<br />
5 5 7 5 5 5 7<br />
5 5 5 7 5 5 7<br />
5 5 5 7 5 7 5<br />
5 5 5 5 5 5 5 4<br />
<strong>5 5 5 2 5 5 5 5 2</strong><br />
5 5 2 5 5 5 5 2 5<br />
5 5 3 5 5 3 5 5 3<br />
5 4 4 5 4 4 5 4 4<br />
4 4 4 4 4 4 4 4 4 3<br />
3 3 3 3 3 3 3 3 3 3 3 3 3<br />
<strong>3 3 3 2 3 3 3 3 2 3 3 3 3 2</strong><br />
2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2<br />
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1<br />
2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1</body></html>