12L 5s
This MOS separates its small steps by intervals of 3L-2L-2L-3L-2L. Its major third of -4 generators approximates an interval between 24/19 and 32/25, thus its generator is a perfect fourth between 7/17edo (494.412) and 5/12edo (500 cents).
Scale tree
Generator | Cents | L | s | L/s | Comments | |||||
---|---|---|---|---|---|---|---|---|---|---|
7\17 | 494.412 | 1 | 1 | 1.000 | ||||||
40\97 | 494.845 | 6 | 5 | 1.200 | ||||||
33\80 | 495.000 | 5 | 4 | 1.250 | ||||||
59\143 | 495.105 | 9 | 7 | 1.286 | ||||||
26\63 | 495.238 | 4 | 3 | 1.333 | Leapfrog | |||||
71\172 | 495.349 | 11 | 8 | 1.375 | ||||||
45\109 | 495.413 | 7 | 5 | 1.400 | Leapweek | |||||
64\155 | 495.484 | 10 | 7 | 1.428 | ||||||
19\46 | 495.652 | 3 | 2 | 1.500 | L/s = 3/2 | |||||
69\167 | 495.808 | 11 | 7 | 1.571 | Leapday | |||||
50\121 | 495.868 | 8 | 5 | 1.600 | ||||||
81\196 | 495.918 | 13 | 8 | 1.625 | Golden neogothic | |||||
31\75 | 496.000 | 5 | 3 | 1.667 | ||||||
74\179 | 496.089 | 12 | 7 | 1.714 | ||||||
43\104 | 496.154 | 7 | 4 | 1.750 | ||||||
55\133 | 496.241 | 9 | 5 | 1.800 | ||||||
12\29 | 496.552 | 2 | 1 | 2.000 | Basic 12L 5s (Generators smaller than this are proper) | |||||
53\128 | 496.875 | 9 | 4 | 2.250 | ||||||
41\99 | 496.970 | 7 | 3 | 2.333 | Undecental | |||||
70\169 | 497.041 | 12 | 5 | 2.400 | Argent tuning | |||||
29\70 | 497.143 | 5 | 2 | 2.500 | ||||||
75\181 | 497.238 | 13 | 5 | 2.600 | Unnamed golden tuning | |||||
46\111 | 497.297 | 8 | 3 | 2.667 | ||||||
63\152 | 497.368 | 11 | 4 | 2.750 | Kwai | |||||
17\41 | 497.561 | 3 | 1 | 3.000 | L/s = 3/1, garibaldi/andromeda | |||||
56\135 | 497.778 | 10 | 3 | 3.333 | ||||||
39\94 | 497.872 | 7 | 2 | 3.500 | Garibaldi/cassandra | |||||
61\147 | 497.959 | 11 | 3 | 3.667 | ||||||
22\53 | 498.113 | 4 | 1 | 4.000 | Garibaldi/helenus | |||||
49\118 | 498.305 | 9 | 2 | 4.500 | Pontiac | |||||
27\65 | 498.462 | 5 | 1 | 5.000 | Photia | |||||
32\77 | 498.701 | 6 | 1 | 6.000 | Grackle↓ | |||||
5\12 | 500.000 | 1 | 0 | → inf |